Reputation: 3788
I have an object traveling along a 3D vector in terms of X, Y, Z... I need to rotate the object according to each axis (x-axis, y-axis, and z-axis).
How do I get these measurements in terms of degrees?
(I am using OpenGL and only know of glRotatef(...)
) [glRotatef(...) documentation here]
Looking at this question, the answer gives
viewvector =
<x, y, z>
r = sqrt(x² + y² + z²)
phi = arctan2(y, x)
theta = arccos(z / r)
but from this wiki page I understand that:
[Edit from Ignacio Vazquez-Abrams]
phi => angle around Z-axis
theta => angle between x/y plane
but how do I find Y? or do I need to?
The real question is, How do I represent this in terms of glRotatef(...)
?
Upvotes: 0
Views: 2832
Reputation: 231
i've spent 3+ days about this question and i came to this: if you have vector3 f.e. particle_velocity than you can find angle phi and theta, why you need this angles - because you can rotate vertixes along velocity vector:
float gaPhi(vec3 v1) {
float r = length(v1);
float phi = atan(v1.y / v1.x);
return phi;
}
float gaTheta(vec3 v1) {
float r = length(v1);
float theta = acos(v1.z / r);
return theta;
}
float rot_x = 0.0;
float rot_y = gaTheta(vel) - pi/2;
if (vel.x >= 0 && vel.y >= 0 && vel.z >= 0) {
//ok
rot_y = -rot_y;
}
if (vel.x < 0 && vel.y >= 0 && vel.z >= 0) {
//ok
rot_y = rot_y + pi;
}
if (vel.x >= 0 && vel.y < 0 && vel.z >= 0) {
//ok
rot_y = -rot_y;
}
if (vel.x >= 0 && vel.y >= 0 && vel.z < 0) {
//ok
rot_y = -rot_y;
}
if (vel.x < 0 && vel.y < 0 && vel.z >= 0) {
//ok
rot_y = rot_y + pi;
}
if (vel.x >= 0 && vel.y < 0 && vel.z < 0) {
//ok
rot_y = -rot_y;
}
if (vel.x < 0 && vel.y >= 0 && vel.z < 0) {
//ok
rot_y = rot_y + pi;
}
if (vel.x < 0 && vel.y < 0 && vel.z < 0) {
//ok
rot_y = rot_y + pi;
}
float rot_z = -gaPhi(vel) ;
glsl vertex shader:
layout(location = 0) in vec3 vertex;
layout(location = 1) in vec3 normal;
layout(location = 2) in vec2 texCoord;
uniform mat4 view; // camera view matrix
uniform mat4 proj; // camera projection matrix
uniform float time; // camera projection matrix
in float particle_radius; // particle radius
in float particle_mass; // particle mass
in vec3 particle_position; // particle position
in vec3 particle_velocity; // particle velocity
out vec2 frag_uv; // pass UV to fragment shader
out float frag_mass; // pass mass to fragment shader
out vec3 frag_velocity; // pass velocity to fragment shader
out vec4 texCoords;
float gaPhi(vec3 v1) {
float r = length(v1);
float phi = atan(v1.y / v1.x);
return phi;
}
float gaTheta(vec3 v1) {
float r = length(v1);
float theta = acos(v1.z / r);
return theta;
}
void main() {
frag_uv = texCoord; //sprite_uv;
texCoords = vec4(texCoord, 0.0, 0.0);
frag_mass = particle_mass;
frag_velocity = particle_velocity;
vec3 vert = vertex * max(10,min(100,particle_radius));
vec3 vertn = normalize(vertex);
float vertl = length(vert);
vec3 vel = particle_velocity;
vec3 vel_dir = normalize(particle_velocity);
float pi = 3.14159265359;
vec4 posnew = vec4(vert, 1.0);
float rot_x = 0.0;
float rot_y = gaTheta(vel) - pi/2;
if (vel.x >= 0 && vel.y >= 0 && vel.z >= 0) {
//ok
rot_y = -rot_y;
}
if (vel.x < 0 && vel.y >= 0 && vel.z >= 0) {
//ok
rot_y = rot_y + pi;
}
if (vel.x >= 0 && vel.y < 0 && vel.z >= 0) {
//ok
rot_y = -rot_y;
}
if (vel.x >= 0 && vel.y >= 0 && vel.z < 0) {
//ok
rot_y = -rot_y;
}
if (vel.x < 0 && vel.y < 0 && vel.z >= 0) {
//ok
rot_y = rot_y + pi;
}
if (vel.x >= 0 && vel.y < 0 && vel.z < 0) {
//ok
rot_y = -rot_y;
}
if (vel.x < 0 && vel.y >= 0 && vel.z < 0) {
//ok
rot_y = rot_y + pi;
}
if (vel.x < 0 && vel.y < 0 && vel.z < 0) {
//ok
rot_y = rot_y + pi;
}
float rot_z = -gaPhi(vel) ;
mat4 rx = mat4( 1.0, 0.0, 0.0, 0.0,
0.0,cos(rot_x),sin(rot_x), 0.0,
0.0,-sin(rot_x),cos(rot_x), 0.0,
0.0, 0.0, 0.0, 1.0);
mat4 ry = mat4( cos(rot_y),0.0, -sin(rot_y), 0.0,
0.0, 1.0, 0.0, 0.0,
sin(rot_y), 0.0, cos(rot_y), 0.0,
0.0,0.0,0.0,1.0);
mat4 rz = mat4( cos(rot_z), sin(rot_z), 0.0, 0.0,
-sin(rot_z), cos(rot_z), 0.0, 0.0,
0.0 , 0.0 ,1.0 ,0.0,
0.0 , 0.0 ,0.0 ,1.0);
posnew = posnew * rx * ry * rz;
vec4 pos = proj * view * vec4(posnew.xyz + particle_position, 1.0);
gl_Position = pos;
}
Upvotes: 0
Reputation: 798686
Theta is the angle above the XY plane. Phi is the angle around the Z axis. In general, polar coordinates in n dimensions have n-1 angle components and 1 radius component.
Upvotes: 1