Reputation: 43
I want to stretch an elliptical object in an image until it forms a circle. My program currently inputs an image with an elliptical object (eg. coin at an angle), thresholds and binarizes it, isolates the region of interest using edge-detect/bwboundaries(), and performs regionprops() to calculate major/minor axis lengths.
Essentially, I want to use the 'MajorAxisLength' as the diameter and stretch the object on the minor axis to form a circle. Any suggestions on how I should approach this would be greatly appreciated. I have appended some code for your perusal (unfortunately I don't have enough reputation to upload an image, the binarized image looks like a white ellipse on a black background).
EDIT: I'd also like to apply this technique to the gray-scale version of the image, to examine what the stretch looks like.
code snippet:
rgbImage = imread(fullFileName);
redChannel = rgbImage(:, :, 1);
binaryImage = redChannel < 90;
labeledImage = bwlabel(binaryImage);
area_measurements = regionprops(labeledImage,'Area');
allAreas = [area_measurements.Area];
biggestBlobIndex = find(allAreas == max(allAreas));
keeperBlobsImage = ismember(labeledImage, biggestBlobIndex);
measurements = regionprops(keeperBlobsImage,'Area','MajorAxisLength','MinorAxisLength')
Upvotes: 2
Views: 2648
Reputation: 43
I finally managed to figure out the transform required thanks to a lot of help on the matlab forums. I thought I'd post it here, in case anyone else needed it.
stats = regionprops(keeperBlobsImage, 'MajorAxisLength','MinorAxisLength','Centroid','Orientation');
alpha = pi/180 * stats(1).Orientation;
Q = [cos(alpha), -sin(alpha); sin(alpha), cos(alpha)];
x0 = stats(1).Centroid.';
a = stats(1).MajorAxisLength;
b = stats(1).MinorAxisLength;
S = diag([1, a/b]);
C = Q*S*Q';
d = (eye(2) - C)*x0;
tform = maketform('affine', [C d; 0 0 1]');
Im2 = imtransform(redChannel, tform);
subplot(2, 3, 5);
imshow(Im2);
Upvotes: 0
Reputation: 77404
You know the diameter of the circle and you know the center is the location where the major and minor axes intersect. Thus, just compute the radius r
from the diameter, and for every pixel in your image, check to see if that pixel's Euclidean distance from the cirlce's center is less than r
. If so, color the pixel white. Otherwise, leave it alone.
[M,N] = size(redChannel);
new_image = zeros(M,N);
for ii=1:M
for jj=1:N
if( sqrt((jj-center_x)^2 + (ii-center_y)^2) <= radius )
new_image(ii,jj) = 1.0;
end
end
end
This can probably be optimzed by using the meshgrid function combined with logical indices to avoid the loops.
Upvotes: 1