Reputation: 23830
Alright. Now this question is pretty hard. I am going to give you an example.
Now the left numbers are my algorithm classification and the right numbers are the original class numbers
177 86
177 86
177 86
177 86
177 86
177 86
177 86
177 86
177 86
177 89
177 89
177 89
177 89
177 89
177 89
177 89
So here my algorithm merged 2 different classes into 1. As you can see it merged class 86 and 89 into one class. So what would be the error at the above example ?
Or here another example
203 7
203 7
203 7
203 7
16 7
203 7
17 7
16 7
203 7
At the above example left numbers are my algorithm classification and the right numbers are original class ids. As can be seen above it miss classified 3 products (i am classifying same commercial products). So at this example what would be the error rate? How would you calculate.
This question is pretty hard and complex. We have finished the classification but we are not able to find correct algorithm for calculating success rate :D
Upvotes: 4
Views: 50530
Reputation: 5613
Classification Error Rate(CER) is 1 - Purity (http://nlp.stanford.edu/IR-book/html/htmledition/evaluation-of-clustering-1.html)
ClusterPurity <- function(clusters, classes) {
sum(apply(table(classes, clusters), 2, max)) / length(clusters)
}
Code of @john-colby Or
CER <- function(clusters, classes) {
1- sum(apply(table(classes, clusters), 2, max)) / length(clusters)
}
Upvotes: -2
Reputation: 21947
Here's a longish example, a real confuson matrix with 10 input classes "0" - "9" (handwritten digits), and 10 output clusters labelled A - J.
Confusion matrix for 5620 optdigits:
True 0 - 9 down, clusters A - J across
-----------------------------------------------------
A B C D E F G H I J
-----------------------------------------------------
0: 2 4 1 546 1
1: 71 249 11 1 6 228 5
2: 13 5 64 1 13 1 460
3: 29 2 507 20 5 9
4: 33 483 4 38 5 3 2
5: 1 1 2 58 3 480 13
6: 2 1 2 294 1 1 257
7: 1 5 1 546 6 7
8: 415 15 2 5 3 12 13 87 2
9: 46 72 2 357 35 1 47 2
----------------------------------------------------
580 383 496 1002 307 670 549 557 810 266 estimates in each cluster
y class sizes: [554 571 557 572 568 558 558 566 554 562]
kmeans cluster sizes: [ 580 383 496 1002 307 670 549 557 810 266]
For example, cluster A has 580 data points, 415 of which are "8"s; cluster B has 383 data points, 249 of which are "1"s; and so on.
The problem is that the output classes are scrambled, permuted; they correspond in this order, with counts:
A B C D E F G H I J
8 1 4 3 6 7 0 5 2 6
415 249 483 507 294 546 546 480 460 257
One could say that the "success rate" is
75 % = (415 + 249 + 483 + 507 + 294 + 546 + 546 + 480 + 460 + 257) / 5620
but this throws away useful information —
here, that E and J both say "6", and no cluster says "9".
So, add up the biggest numbers in each column of the confusion matrix
and divide by the total.
But, how to count overlapping / missing clusters,
like the 2 "6"s, no "9"s here ?
I don't know of a commonly agreed-upon way
(doubt that the Hungarian algorithm
is used in practice).
Bottom line: don't throw away information; look at the whole confusion matrix.
NB such a "success rate" will be optimistic for new data !
It's customary to split the data into say 2/3 "training set" and 1/3 "test set",
train e.g. k-means on the 2/3 alone,
then measure confusion / success rate on the test set — generally worse than on the training set alone.
Much more can be said; see e.g.
Cross-validation.
Upvotes: 5
Reputation: 2200
You have to define a error metric to measure yourself. In your case, a simple method should be to find the properties mapping of your product as
p = properties(id)
where id
is the product id, and p
is likely be a vector with each entry of different properties. Then you can define the error function e
(or distance) between two products as
e = d(p1, p2)
Sure, each properties must be evaluated to a number in this function. Then this error function can be used in the classification algorithm and learning.
In your second example, it seems that you treat the pair (203 7) as successful classification, so I think you have already a metric yourself. You may be more specific to get better answer.
Upvotes: 0
Reputation: 13289
You have to define the error criteria if you want to evaluate the performance of an algorithm, so I'm not sure exactly what you're asking. In some clustering and machine learning algorithms you define the error metric and it minimizes it.
Take a look at this https://en.wikipedia.org/wiki/Confusion_matrix to get some ideas
Upvotes: 0