Reputation: 3501
I have a array of names and I want to use these names for the column names for a data frame but I am getting some errors. I am not sure how exactly to do this, but this is what I have so far.
windspeeds = data.frame()
cities <- c("albuquerque_nm", "boston_ma", "charlotte_nc", "dallas_tx", "denver_co", "helena_mt", "louisville_ky", "pittsburgh_pa", "salt_lake_city_ut", "seattle_wa")
for(i in 1:10){
fastest <- read.delim(paste("http://www.itl.nist.gov/div898/winds/data/nondirectional/datasets/", cities[i], ".prn", sep=""), col.names=c("NULL", "fastest", "NULL", "NULL"), skip=4, header=F, sep="")$fastest
windspeeds$cities[i] = fastest
}
I am getting this error:
Error in `$<-.data.frame`(`*tmp*`, "cities", value = 59L) :
replacement has 1 rows, data has 0
In addition: Warning message:
In windspeeds$cities[i] = fastest :
number of items to replace is not a multiple of replacement length
I have to convert the array to some type of string or constant?
Upvotes: 1
Views: 1398
Reputation: 69171
One of your problems is that your query doesn't return the same number of records for each city (Disclaimer, I know nothing about your data or what it should look like). Regardless, here's one way to read your data into a list object which is probably a more "R-ish" way to do things:
x <- lapply(cities, function(x)
read.delim(paste("http://www.itl.nist.gov/div898/winds/data/nondirectional/datasets/", x, ".prn", sep=""),
col.names=c("NULL", "fastest", "NULL", "NULL"), skip=4, header=FALSE, sep="")$fastest
)
X now looks like:
> str(x)
List of 10
$ : int [1:46] 59 49 51 52 57 52 45 54 49 64 ...
$ : int [1:42] 50 55 79 56 53 41 51 51 65 62 ...
$ : int [1:29] 33 42 40 52 42 48 52 51 46 51 ...
$ : int [1:32] 48 45 46 45 43 53 43 58 46 43 ...
$ : int [1:33] 42 51 49 44 47 47 50 44 44 54 ...
$ : int [1:48] 58 58 58 58 70 55 56 62 59 70 ...
$ : int [1:39] 40 39 50 53 50 51 54 54 51 50 ...
$ : int [1:18] 47 56 60 44 54 50 42 52 47 47 ...
$ : int [1:46] 53 49 40 53 55 40 49 46 61 41 ...
$ : int [1:10] 38 44 35 46 42 45 41 45 42 43
And has the descriptive statistics:
> do.call(rbind, lapply(x, summary))
Min. 1st Qu. Median Mean 3rd Qu. Max.
[1,] 45 49.50 53.0 55.02 57.00 85
[2,] 41 49.25 54.5 56.26 60.75 85
[3,] 33 39.00 42.0 44.86 51.00 65
[4,] 39 45.75 48.0 49.16 51.50 67
[5,] 42 44.00 48.0 48.67 51.00 61
[6,] 42 49.00 55.0 54.04 58.00 71
[7,] 38 43.50 49.0 48.74 52.50 66
[8,] 39 45.00 47.0 48.44 53.50 60
[9,] 40 45.25 49.0 50.41 54.00 69
[10,] 35 41.25 42.5 42.10 44.75 46
Whether or not you should have the same number of records for each city is unknown, but hopefully this will get you down the right path.
Upvotes: 3