Reputation: 1277
I have the following code to create a sample function and to generate simulated data
mean_detects<- function(obs,cens) {
detects <- obs[cens==0]
nondetects <- obs[cens==1]
res <- mean(detects)
return(res)
}
mu <-log(1); sigma<- log(3); n_samples=10, n_iterations = 5; p=0.10
dset2 <- function (mu, sigma, n_samples, n_iterations, p) {
X_after <- matrix(NA_real_, nrow = n_iterations, ncol = n_samples)
delta <- matrix(NA_real_, nrow = n_iterations, ncol = n_samples)
lod <- quantile(rlnorm(100000, mu, sigma), p = p)
pct_cens <- numeric(n_iterations)
count <- 1
while(count <= n_iterations) {
X_before <- rlnorm(n_samples, mu, sigma)
X_after[count, ] <- pmax(X_before, lod)
delta [count, ] <- X_before <= lod
pct_cens[count] <- mean(delta[count,])
if (pct_cens [count] > 0 & pct_cens [count] < 1 ) count <- count + 1 }
ave_detects <- mean_detects(X_after,delta) ## how can I use apply or other functions here?
return(ave_detects)
}
If I specify n_iterations, I will have a 1x10 X_after matrix and also 1x10 delta matrix. Then the mean_detects function works fine using this command.
ave_detects <- mean_detects(X_after,delta)
however when I increase n_iterations to say 5, then I will have 2 5x10 X_after and delta then the mean_detects function does not work any more. It only gives me output for 1 iteration instead of 5. My real simulation has thousands of iterations so speed and memory must also be taken into account.
Edits: I edited my code based your comments. The mean_detects function that I created was meant to show an example the use of X_after and delta matrices simultaneously. The real function is very long. That's why I did not post it here.
Upvotes: 0
Views: 108
Reputation: 60462
Your actual question isn't really clear. So,
"speed and memory must be taken into account". This is vague. Will your run out of memory? As a suggestion, you could think about a rolling mean. For example,
x = runif(5)
total = 0
for(i in seq_along(x)) {
total = (i-1)*total/i + x[i]/i
cat(i, ": mean ", total, "\n")
}
1 : mean 0.4409
2 : mean 0.5139
3 : mean 0.5596
4 : mean 0.6212
5 : mean 0.6606
Aside
dest2
function requires the variable n
(which you haven't defined).dest2
function doesn't return an obvious value.your mean_detects
function can be simplified to:
mean(obs[cens==0])
Upvotes: 2