Reputation: 3088
I'm trying to introduce some CUDA optimizations in one of my projects. But I think I'm doing something wrong here. I want to implement a simple matrix-vector multiplication (result
= matrix
* vector
). But when I want to copy the result back to the host, errors will occur (cudaErrorLaunchFailure
). Is there an error in my kernel (matrixVectorMultiplicationKernel
) or did I call cudaMemcpy
incorrectly? I found no helpful documentation for this kind of error state. I think this completely destroys the state of the GPU because I cannot call any CUDA kernel without getting this error again after the first occurrence.
edit#1: Updated code, following leftaroundabout's advice.
// code
...
Eigen::MatrixXf matrix(M, N); // matrix.data() usually should return a float array
Eigen::VectorXf vector(N); // same here for vector.data()
Eigen::VectorXf result(M);
... // fill matrix and vector
float* matrixOnDevice = copyMatrixToDevice(matrix.data(), matrix.rows(), matrix.cols());
matrixVectorMultiplication(matrixOnDevice, vector.data(), result.data(), matrix.rows(), cm.cols());
... // clean up
// helper functions
float* copyMatrixToDevice(const float* matrix, int mRows, int mCols)
{
float* matrixOnDevice;
const int length = mRows*mCols;
const int size = length * sizeof(float);
handleCUDAError(cudaMalloc((void**)&matrixOnDevice, size));
handleCUDAError(cudaMemcpy(matrixOnDevice, matrix, size, cudaMemcpyHostToDevice));
return matrixOnDevice;
}
void matrixVectorMultiplication(const float* matrixOnDevice, const float* vector, float* result, int mRows, int mCols)
{
const int vectorSize = mCols*sizeof(float);
const int resultSize = mRows*sizeof(float);
const int matrixLength = mRows*mCols;
float* deviceVector;
float* deviceResult;
handleCUDAError(cudaMalloc((void**)&deviceVector, vectorSize));
handleCUDAError(cudaMalloc((void**)&deviceResult, resultSize));
handleCUDAError(cudaMemset(deviceResult, 0, resultSize));
handleCUDAError(cudaMemcpy(deviceVector, vector, vectorSize, cudaMemcpyHostToDevice));
int threadsPerBlock = 256;
int blocksPerGrid = (mRows + threadsPerBlock - 1) / threadsPerBlock;
matrixVectorMultiplicationKernel<<<blocksPerGrid, threadsPerBlock>>>(matrixOnDevice, vector, result, mRows, mCols, matrixLength);
// --- no errors yet ---
handleCUDAError(cudaMemcpy(result, deviceResult, resultSize, cudaMemcpyDeviceToHost)); // cudaErrorLaunchFailure
handleCUDAError(cudaFree(deviceVector)); // cudaErrorLaunchFailure
handleCUDAError(cudaFree(deviceResult)); // cudaErrorLaunchFailure
}
__global__ void matrixVectorMultiplicationKernel(const float* matrix, const float* vector, float* result, int mRows, int mCols, int length)
{
int row = blockDim.x * blockIdx.x + threadIdx.x;
if(row < mRows)
{
for(int col = 0, mIdx = row*mCols; col < mCols; col++, mIdx++)
result[row] += matrix[mIdx] * vector[col];
}
}
Upvotes: 1
Views: 616
Reputation: 120731
Your problem is that void copyMatrixToDevice(..., float* matrixOnDevice, ...)
takes this pointer by value, i.e. it can't "output" the device matrix. You can do it with void copyMatrixToDevice(..., float** matrixOnDevice, ...)
, called by
copyMatrixToDevice(matrix.data(), &matrixOnDevice, matrix.rows(), matrix.cols());
There is the same problem with result
in matrixVectorMultiplication
.
In the long term, in C++ you should put a proper class abstraction layer around all of this.
Upvotes: 3