Reputation: 11258
Is there a simple way of replacing all negative values in an array with 0?
I'm having a complete block on how to do it using a NumPy array.
E.g.
a = array([1, 2, 3, -4, 5])
I need to return
[1, 2, 3, 0, 5]
a < 0
gives:
[False, False, False, True, False]
This is where I'm stuck - how to use this array to modify the original array.
Upvotes: 111
Views: 144468
Reputation: 2137
Benchmark using numpy
:
%%timeit
a = np.random.random(1000) - 0.5
b = np.maximum(a,0)
# 18.2 µs ± 204 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%%timeit
a = np.random.random(1000) - 0.5
a[a < 0] = 0
# 19.6 µs ± 304 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)
%%timeit
a = np.random.random(1000) - 0.5
b = np.where(a<0, 0, a)
# 21.1 µs ± 134 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
%%timeit
a = np.random.random(1000) - 0.5
b = a.clip(0)
# 37.7 µs ± 124 ns per loop (mean ± std. dev. of 7 runs, 10000 loops each)
Supprisingly, np.maximum
beat @NPE answer.
Caveat:
os[os < 0] = 0
is faster than np.where()
but not supported by numba
. But whatever, np.maximum()
is the fastest that I found.
np.maximum()
is different from np.max()
and np.amax()
. np.maximum()
can compare vector
with single value.
Upvotes: 3
Reputation: 143047
Another minimalist Python solution without using numpy:
[0 if i < 0 else i for i in a]
No need to define any extra functions.
a = [1, 2, 3, -4, -5.23, 6]
[0 if i < 0 else i for i in a]
yields:
[1, 2, 3, 0, 0, 6]
Upvotes: 10
Reputation: 28240
Here's a way to do it in Python without NumPy. Create a function that returns what you want and use a list comprehension, or the map function.
>>> a = [1, 2, 3, -4, 5]
>>> def zero_if_negative(x):
... if x < 0:
... return 0
... return x
...
>>> [zero_if_negative(x) for x in a]
[1, 2, 3, 0, 5]
>>> map(zero_if_negative, a)
[1, 2, 3, 0, 5]
Upvotes: 2
Reputation: 4017
And yet another possibility:
In [2]: a = array([1, 2, 3, -4, 5])
In [3]: where(a<0, 0, a)
Out[3]: array([1, 2, 3, 0, 5])
Upvotes: 4
Reputation: 150977
Try numpy.clip
:
>>> import numpy
>>> a = numpy.arange(-10, 10)
>>> a
array([-10, -9, -8, -7, -6, -5, -4, -3, -2, -1, 0, 1, 2,
3, 4, 5, 6, 7, 8, 9])
>>> a.clip(0, 10)
array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
You can clip only the bottom half with clip(0)
.
>>> a = numpy.array([1, 2, 3, -4, 5])
>>> a.clip(0)
array([1, 2, 3, 0, 5])
You can clip only the top half with clip(max=n)
. (This is much better than my previous suggestion, which involved passing NaN
to the first parameter and using out
to coerce the type.):
>>> a.clip(max=2)
array([ 1, 2, 2, -4, 2])
Another interesting approach is to use where
:
>>> numpy.where(a <= 2, a, 2)
array([ 1, 2, 2, -4, 2])
Finally, consider aix's answer. I prefer clip
for simple operations because it's self-documenting, but his answer is preferable for more complex operations.
Upvotes: 101
Reputation: 500327
You are halfway there. Try:
In [4]: a[a < 0] = 0
In [5]: a
Out[5]: array([1, 2, 3, 0, 5])
Upvotes: 163