Reputation: 3191
I've been using ArrayList for my project to store a cricket team players and order them. I started thinking about using a TreeSet because of its advantage of removing duplicates. However the problem I'm having is that if for example I create the following two players:
P p1 = new P("Jack","Daniel",33(age),180(height),78(weight),41(games played),2300
(runs scored),41(dismisses))
P p2 = new P("Jack","Daniel",37(age),185(height),79(weight),45(games played),2560
(runs scored),45(dismisses))
Notice that the two players have the same first and last name, but everything else is different. When I try to add these two players to the TreeSet, it considers them duplicates because of the names similarities and removes the second one. Obviously I don't want this to happen and I want the Set to remove a player only if everything he has is the same as another player, and not just the first and last names.
Is there a way of achieving this?
Also my TreeSet takes a Player object.
Upvotes: 2
Views: 9202
Reputation: 501
class Student implements Comparable<Student> {
String name;
public Student(String name) {
this.name=name;
}
public String toString(){
return name;
}
public int compareTo(Student gStudent) {
if(!this.name.equals(gStudent.getName()))
return 1;
return 0;
}
private String getName() {
return name;
}
}
Upvotes: 0
Reputation: 330
a TreeSet instance performs all element comparisons using its compareTo (or compare) method, so two elements that are deemed equal by this method are, from the standpoint of the set, equal. The behavior of a set is well-defined even if its ordering is inconsistent with equals; it just fails to obey the general contract of the Set interface.
From Java Platform Standard Edition 8 Documentation TreeSet
part.
Upvotes: 0
Reputation: 16555
Originally, this answer neglected the fact that a TreeSet
does its comparisons based on compareTo()
, rather than equals()
. Edits have been made to address this.
You need to define equals()
, hashCode()
and compareTo()
for your Player
object correctly. (Since it's a TreeSet
and not a HashSet
, implementing hashCode()
isn't so important - but it's good practice.)
Equals and hashCode need to take into account all of the fields. Eclipse can auto-generate one for you that will look similar to this (Source > Generate hashcode and equals).
If you already have a natural sort order that doesn't use all of the fields, then you could supply a custom comparator to your TreeSet
. However, even if you really only want to sort by a subset of the fields, there's nothing stopping you sorting by all fields (with the uninteresting fields only playing a part of the interesting parts are identical). The important thing to note here is that a TreeSet
determines equality not by the equals()
method, but by compareTo() == 0
.
Here's an example equals():
@Override
public boolean equals(Object obj)
{
if (this == obj) {
return true;
}
if (obj == null) {
return false;
}
if (getClass() != obj.getClass()) {
return false;
}
Player that = (Player) obj;
return this.age == that.age &&
this.height == that.height &&
this.weight == that.weight &&
this.games == that.games &&
this.runs == that.runs &&
this.dismisses == that.dismisses &&
this.given.equals(that.given) &&
this.family.equals(that.family);
}
And here's hashcode:
@Override
public int hashCode() {
final int prime = 31;
int result = 1;
result = prime * result + this.age;
result = prime * result + this.dismisses;
result = prime * result + this.family.hashCode());
result = prime * result + this.games;
result = prime * result + this.given.hashCode());
result = prime * result + this.height;
result = prime * result + this.runs;
result = prime * result + this.weight;
return result;
}
Finally, here's a compareTo:
public int compareTo(Player that)
{
int result;
result = this.family.compareTo(that.family);
if (result != 0) // is the family name different?
{
return result; // yes ... use it to discriminate
}
result = this.given.compareTo(that.given);
if (result != 0) // is the given name different?
{
return result; // yes ... use it to discriminate
}
result = this.age - that.age; // is the age different?
if (result != 0)
{
return result; // yes ... use it to discriminate
}
... (and so on) ...
... with the final one ...
return this.dismisses - that.dismisses; // only thing left to discriminate by
}
Upvotes: 12