Litherum
Litherum

Reputation: 23363

What is the effect of extern "C" in C++?

What exactly does putting extern "C" into C++ code do?

For example:

extern "C" {
   void foo();
}

Upvotes: 2175

Views: 1302807

Answers (18)

MattTT
MattTT

Reputation: 549

It is interesting, that neither Visual Studio nor dumpbin occur in this thread (until now). So I want to add some info about this as well.
(If it makes sense, we could merge this into any of the above answers as well. I'm not sure about the SO philosophy here.)


When compiling with Visual Studio compiler, each extern "C" symbol is preceded with a leading underscore.
example: compiling

extern "C"
void cf () {}

void cppf () {}

and running dumpbin /symbols on the resulting object, the symbols looks as following:

01A 00000000 SECT7  notype ()    External     | _cf
01B 00000000 SECT5  notype ()    External     | ?cppf@@YAXXZ (void __cdecl cppf(void))

Same for variables.

typedef struct {
  int a;
  int b;
}
CppStruct;

extern "C" {
  typedef struct {
    int a;
    int b;
    int c;
  }
  CStruct;
  CStruct cCStruct;
  CppStruct cCppStruct;
}
CStruct cppCStruct;
CppStruct cppCppStruct;

dumpbin /symbols

009 00000000 SECT3  notype       External     | _cCStruct
00A 0000000C SECT3  notype       External     | _cCppStruct
00B 00000014 SECT3  notype       External     | ?cppCStruct@@3UCStruct@@A (struct CStruct cppCStruct)
00C 00000020 SECT3  notype       External     | ?cppCppStruct@@3UCppStruct@@A (struct CppStruct cppCppStruct)

side note: For C++ symbols, dumpbin also shows you the unmangled symbol name in parentheses.
side note 2: As you can see, extern "C" does not affect type definitions.


Look out! If a variable is declared somewhere before without extern "C" (e.g. in a header file), then it will be compiled with C++ linkage without further notice:

extern CppStruct ifcStruct;
extern int       ifcVar;
/* ... */

extern "C"
{
CppStruct ifcStruct;
int       ifcVar = 0;
}

dumpbin /symbols

00C 00000000 SECT4  notype       External     | ?ifcStruct@@3UCppStruct@@A (struct CppStruct ifcStruct)
00D 00000008 SECT4  notype       External     | ?ifcVar@@3HA (int ifcVar)

However, when a function is declared somewhere before without extern "C", then the (Microsoft) compiler gives a distinct error message:

test.cpp(20): error C2732: linkage specification contradicts earlier specification for 'ifcf'
test.cpp(20): note: see declaration of 'ifcf'

(The reasons for this difference are discussed here.)


As far as I know, extern "C" also tells the compiler to use C calling conventions.
see also Exporting C++ classes from a DLL - Eli Bendersky's website (Google still finds it, but the site seems dead):

extern "C" __declspec(dllexport) IKlass* __cdecl create_klass()
Let's see what each part means, in order:

  • extern "C" - tells the C++ compiler that the linker should use the C calling convention and name mangling for this function. The name itself is exported from the DLL unmangled (create_klass)
  • __declspec(dllexport) - tells the linker to export the create_klass symbol from the DLL. Alternatively, the name create_klass can be placed in a .def file given to the linker.
  • __cdecl - repeats that the C calling convention (opposite of __stdcall calling convention) is to be used. It's not strictly necessary here, but I include it for completeness (in the typedef for iklass_factory in the application code as well).

see also this FAQ: How to mix C and C++

Upvotes: 2

Dražen Grašovec
Dražen Grašovec

Reputation: 802

This is a demonstration with sample code.

This code clearly wouldn't compile in C because of two functions share same name, but can compile in C++, which allows overloading of functions:

#include <stdio.h>

const char* get_message2(void); 
int get_message2(char*); 

int main() {
   char test[] = "BBBBBBB";
   get_message2(test);
   return 0;
}

const char* get_message2() {
    char test[] = "AAAAAAA";
    return "message2";
};

int get_message2(char* arg) {
    char test[] = "CCCCCCC";
   return 0;
}

In C++ function names are not unique symbol identifiers, and C++ compiler adds "prefixes" and "suffixes" to symbol name based on function prototype:

drazen@HP-ProBook-640G1:~/proba$ readelf  -a proba | grep message
    34: 0000000000001199    70 FUNC    GLOBAL DEFAULT   16 _Z12get_message2v
    36: 00000000000011df    72 FUNC    GLOBAL DEFAULT   16 _Z12get_message2Pc

But if we want for our function have a C linkage, we must add extern "C" modifier

const char* get_message2(void); 
extern "C" {
   int get_message2(char*); 
}

Now our int get_message2(char*); function has an old C linkage:

drazen@HP-ProBook-640G1:~/proba$ readelf  -a proba | grep message
    32: 00000000000011df    72 FUNC    GLOBAL DEFAULT   16 get_message2
    35: 0000000000001199    70 FUNC    GLOBAL DEFAULT   16 _Z12get_message2v

Upvotes: 5

UncaAlby
UncaAlby

Reputation: 5354

Just wanted to add a bit of info, since I haven't seen it posted yet.

You'll very often see code in C headers like so:

#ifdef __cplusplus
extern "C" {
#endif

// all of your legacy C code here

#ifdef __cplusplus
}
#endif

What this accomplishes is that it allows you to use that C header file with your C++ code, because the macro __cplusplus will be defined. But you can also still use it with your legacy C code, where the macro is NOT defined, so it won't see the uniquely C++ construct.

Although, I have also seen C++ code such as:

extern "C" {
#include "legacy_C_header.h"
}

which I imagine accomplishes much the same thing.

Not sure which way is better, but I have seen both.

Upvotes: 453

tothedistance
tothedistance

Reputation: 491

gcc seems to support name mangling as well recently. even inside extern "c", if you use class or overloading, it will automatically mangle.

#include <stdio.h>
extern "C"{


struct myint{
    int i;
};

struct myint2
{
    int a;
    myint2(int a): a(a) {};
    operator myint() const {return myint{a};}
};

}

void f1(myint i){
    printf("%d", i.i);
}

int main(){
    myint2 a(1);
    f1(a);
}

I even used many cpp feature. but the code compiles and runs ok. if you nm, you can see main is not mangled, but myint is.

Upvotes: 0

tim-montague
tim-montague

Reputation: 17442

C++ mangles function names to create an object-oriented language from a procedural language

Most programming languages aren't built on-top of existing programming languages. C++ is built on-top of C, and furthermore it's an object-oriented programming language built from a procedural programming language, and for that reason there are C++ expressions like extern "C" which provide backwards compatibility with C.

Let's look at the following example:

#include <stdio.h>
    
// Two functions are defined with the same name
//   but have different parameters

void printMe(int a) {
  printf("int: %i\n", a);
}

void printMe(char a) {
  printf("char: %c\n", a);
}
    
int main() {
  printMe('a');
  printMe(1);
  return 0;
}

A C compiler will not compile the above example, because the same function printMe is defined twice (even though they have different parameters int a vs char a).

gcc -o printMe printMe.c && ./printMe;
1 error. PrintMe is defined more than once.

However, a C++ compiler will compile the above example. It does not care that printMe is defined twice.

g++ -o printMe printMe.c && ./printMe;

This is because a C++ compiler implicitly renames (mangles) functions based on their parameters. The language was designed to be object-oriented - to create different classes with methods (functions) of the same name, and to override methods names (method overriding) based on different parameters.

What extern "C" says is "don't mangle C function names"

Even though C++ was built on C, mangling can cause a mess for C code. For example, imagine we have a legacy C file named "parent.c" that includes function names from different header files, "parent.h", "child.h", etc. If we run "parent.c" through a C++ compiler, that will mangle function names in that file, and they will no longer match the function names specified in the header files. So the function names in the "parent.h" and "child.h" header files would need to be mangled as well. This might be okay for a few files, but if the C program is complex, mangling could be slow and cause broken code, so it might be convenient to provide a keyword which tells the C++ compiler not to mangle function names.

The extern "C" keyword tells a C++ compiler not to mangle (rename) C function names.

For example:

extern "C" void printMe(int a);

Upvotes: 99

Decompile a g++ generated binary to see what is going on

main.cpp

void f() {}
void g();

extern "C" {
    void ef() {}
    void eg();
}

/* Prevent g and eg from being optimized away. */
void h() { g(); eg(); }

Compile and disassemble the generated ELF output:

g++ -c -std=c++11 -Wall -Wextra -pedantic -o main.o main.cpp
readelf -s main.o

The output contains:

     8: 0000000000000000     7 FUNC    GLOBAL DEFAULT    1 _Z1fv
     9: 0000000000000007     7 FUNC    GLOBAL DEFAULT    1 ef
    10: 000000000000000e    17 FUNC    GLOBAL DEFAULT    1 _Z1hv
    11: 0000000000000000     0 NOTYPE  GLOBAL DEFAULT  UND _GLOBAL_OFFSET_TABLE_
    12: 0000000000000000     0 NOTYPE  GLOBAL DEFAULT  UND _Z1gv
    13: 0000000000000000     0 NOTYPE  GLOBAL DEFAULT  UND eg

Interpretation

We see that:

  • ef and eg were stored in symbols with the same name as in the code

  • the other symbols were mangled. Let's unmangle them:

    $ c++filt _Z1fv
    f()
    $ c++filt _Z1hv
    h()
    $ c++filt _Z1gv
    g()
    

Conclusion: both of the following symbol types were not mangled:

  • defined
  • declared but undefined (Ndx = UND), to be provided at link or run time from another object file

So you will need extern "C" both when calling:

  • C from C++: tell g++ to expect unmangled symbols produced by gcc
  • C++ from C: tell g++ to generate unmangled symbols for gcc to use

Things that do not work in extern C

It becomes obvious that any C++ feature that requires name mangling will not work inside extern C:

extern "C" {
    // Overloading.
    // error: declaration of C function ‘void f(int)’ conflicts with
    void f();
    void f(int i);

    // Templates.
    // error: template with C linkage
    template <class C> void f(C i) { }
}

Minimal runnable C from C++ example

For the sake of completeness and for the newbs out there, see also: How to use C source files in a C++ project?

Calling C from C++ is pretty easy: each C function only has one possible non-mangled symbol, so no extra work is required.

main.cpp

#include <cassert>

#include "c.h"

int main() {
    assert(f() == 1);
}

c.h

#ifndef C_H
#define C_H

/* This ifdef allows the header to be used from both C and C++ 
 * because C does not know what this extern "C" thing is. */
#ifdef __cplusplus
extern "C" {
#endif
int f();
#ifdef __cplusplus
}
#endif

#endif

c.c

#include "c.h"

int f(void) { return 1; }

Run:

g++ -c -o main.o -std=c++98 main.cpp
gcc -c -o c.o -std=c89 c.c
g++ -o main.out main.o c.o
./main.out

Without extern "C" the link fails with:

main.cpp:6: undefined reference to `f()'

because g++ expects to find a mangled f, which gcc did not produce.

Example on GitHub.

Minimal runnable C++ from C example

Calling C++ from C is a bit harder: we have to manually create non-mangled versions of each function we want to expose.

Here we illustrate how to expose C++ function overloads to C.

main.c

#include <assert.h>

#include "cpp.h"

int main(void) {
    assert(f_int(1) == 2);
    assert(f_float(1.0) == 3);
    return 0;
}

cpp.h

#ifndef CPP_H
#define CPP_H

#ifdef __cplusplus
// C cannot see these overloaded prototypes, or else it would get confused.
int f(int i);
int f(float i);
extern "C" {
#endif
int f_int(int i);
int f_float(float i);
#ifdef __cplusplus
}
#endif

#endif

cpp.cpp

#include "cpp.h"

int f(int i) {
    return i + 1;
}

int f(float i) {
    return i + 2;
}

int f_int(int i) {
    return f(i);
}

int f_float(float i) {
    return f(i);
}

Run:

gcc -c -o main.o -std=c89 -Wextra main.c
g++ -c -o cpp.o -std=c++98 cpp.cpp
g++ -o main.out main.o cpp.o
./main.out

Without extern "C" it fails with:

main.c:6: undefined reference to `f_int'
main.c:7: undefined reference to `f_float'

because g++ generated mangled symbols which gcc cannot find.

Example on GitHub.

Where is the extern "c" when I include C headers from C++?

Tested in Ubuntu 18.04.

Upvotes: 436

Faisal Vali
Faisal Vali

Reputation: 33713

extern "C" makes a function-name in C++ have C linkage (compiler does not mangle the name) so that client C code can link to (use) your function using a C compatible header file that contains just the declaration of your function. Your function definition is contained in a binary format (that was compiled by your C++ compiler) that the client C linker will then link to using the C name.

Since C++ has overloading of function names and C does not, the C++ compiler cannot just use the function name as a unique id to link to, so it mangles the name by adding information about the arguments. A C compiler does not need to mangle the name since you can not overload function names in C. When you state that a function has extern "C" linkage in C++, the C++ compiler does not add argument/parameter type information to the name used for linkage.

Just so you know, you can specify extern "C" linkage to each individual declaration/definition explicitly or use a block to group a sequence of declarations/definitions to have a certain linkage:

extern "C" void foo(int);
extern "C"
{
   void g(char);
   int i;
}

If you care about the technicalities, they are listed in section 7.5 of the C++03 standard, here is a brief summary (with emphasis on extern "C"):

  • extern "C" is a linkage-specification
  • Every compiler is required to provide "C" linkage
  • A linkage specification shall occur only in namespace scope
  • All function types, function names and variable names have a language linkage See Richard's Comment: Only function names and variable names with external linkage have a language linkage
  • Two function types with distinct language linkages are distinct types even if otherwise identical
  • Linkage specs nest, inner one determines the final linkage
  • extern "C" is ignored for class members
  • At most one function with a particular name can have "C" linkage (regardless of namespace)
  • extern "C" forces a function to have external linkage (cannot make it static) See Richard's comment: static inside extern "C" is valid; an entity so declared has internal linkage, and so does not have a language linkage
  • Linkage from C++ to objects defined in other languages and to objects defined in C++ from other languages is implementation-defined and language-dependent. Only where the object layout strategies of two language implementations are similar enough can such linkage be achieved

Upvotes: 2043

Flami
Flami

Reputation: 527

extern "C" is meant to be recognized by a C++ compiler and to notify the compiler that the noted function is (or will be) compiled in C style, so that while linking, it links to the correct version of the function from C.

Upvotes: 13

gnasher729
gnasher729

Reputation: 52632

A function void f() compiled by a C compiler and a function with the same name void f() compiled by a C++ compiler are not the same function. If you wrote that function in C, and then you tried to call it from C++, then the linker would look for the C++ function and not find the C function.

extern "C" tells the C++ compiler that you have a function which was compiled by the C compiler. Once you tell it that it was compiled by the C compiler, the C++ compiler will know how to call it correctly.

It also allows the C++ compiler to compile a C++ function in such a way that the C compiler can call it. That function would officially be a C function, but since it is compiled by the C++ compiler, it can use all the C++ features and has all the C++ keywords.

Upvotes: 4

Susobhan Das
Susobhan Das

Reputation: 1174

Without conflicting with other good answers, I will add a bit of my example.

What exactly C++ Compiler does: it mangles the names in the compilation process, hence we require telling the compiler to treat C implementation specially.

When we are making C++ classes and adding extern "C", we're telling our C++ compiler that we are using C calling convention.

Reason (we are calling C implementation from C++): either we want to call C function from C++ or calling C++ function from C (C++ classes ... etc do not work in C).

Upvotes: 0

Sander Mertens
Sander Mertens

Reputation: 959

Not any C-header can be made compatible with C++ by merely wrapping in extern "C". When identifiers in a C-header conflict with C++ keywords the C++ compiler will complain about this.

For example, I have seen the following code fail in a g++ :

extern "C" {
struct method {
    int virtual;
};
}

Kinda makes sense, but is something to keep in mind when porting C-code to C++.

Upvotes: 34

Manohar Reddy Poreddy
Manohar Reddy Poreddy

Reputation: 27515

This answer is for the impatient/ have deadlines to meet to, only a part/simple explanation is below:

  • in C++, you can have same name in class via overloading (for example, since they are all same name can't be exported as-is from dll, etc.) solution to these problems is they are converted to different strings (called symbols), symbols accounts the name of function, also the arguments, so each of these functions even with same name, can be uniquely identified (also called, name mangling)
  • in C, you don't have overloading, the function name is unique (so, a separate string for identifying the a function name uniquely is not required, so symbol is function name itself)

So
in C++, with name mangling uniquely identities each function
in C, even without name mangling uniquely identities each function

To change the behaviour of C++, that is, to specify that name mangling should not happen for a particular function, you can use extern "C" before the function name, for whatever reason, like exporting a function with a specific name from a dll, for use by its clients.

Read other answers, for more detailed/more correct answers.

Upvotes: 4

sud03r
sud03r

Reputation: 19779

In every C++ program, all non-static functions are represented in the binary file as symbols. These symbols are special text strings that uniquely identify a function in the program.

In C, the symbol name is the same as the function name. This is possible because in C no two non-static functions can have the same name.

Because C++ allows overloading and has many features that C does not — like classes, member functions, exception specifications - it is not possible to simply use the function name as the symbol name. To solve that, C++ uses so-called name mangling, which transforms the function name and all the necessary information (like the number and size of the arguments) into some weird-looking string processed only by the compiler and linker.

So if you specify a function to be extern C, the compiler doesn't performs name mangling with it and it can be directly accessed using its symbol name as the function name.

This comes handy while using dlsym() and dlopen() for calling such functions.

Upvotes: 231

Trombe
Trombe

Reputation: 197

When mixing C and C++ (i.e., a. calling C function from C++; and b. calling C++ function from C), the C++ name mangling causes linking problems. Technically speaking, this issue happens only when the callee functions have been already compiled into binary (most likely, a *.a library file) using the corresponding compiler.

So we need to use extern "C" to disable the name mangling in C++.

Upvotes: 1

Yogeesh H T
Yogeesh H T

Reputation: 2905

extern "C" is a linkage specification which is used to call C functions in the Cpp source files. We can call C functions, write Variables, & include headers. Function is declared in extern entity & it is defined outside. Syntax is

Type 1:

extern "language" function-prototype

Type 2:

extern "language"
{
     function-prototype
};

eg:

#include<iostream>
using namespace std;

extern "C"
{
     #include<stdio.h>    // Include C Header
     int n;               // Declare a Variable
     void func(int,int);  // Declare a function (function prototype)
}

int main()
{
    func(int a, int b);   // Calling function . . .
    return 0;
}

// Function definition . . .
void func(int m, int n)
{
    //
    //
}

Upvotes: 7

Zero Infinity
Zero Infinity

Reputation: 918

I used 'extern "C"' before for dll(dynamic link library) files to make etc. main() function "exportable" so it can be used later in another executable from dll. Maybe an example of where I used to use it can be useful.

DLL

#include <string.h>
#include <windows.h>

using namespace std;

#define DLL extern "C" __declspec(dllexport)
//I defined DLL for dllexport function
DLL main ()
{
    MessageBox(NULL,"Hi from DLL","DLL",MB_OK);
}

EXE

#include <string.h>
#include <windows.h>

using namespace std;

typedef LPVOID (WINAPI*Function)();//make a placeholder for function from dll
Function mainDLLFunc;//make a variable for function placeholder

int main()
{
    char winDir[MAX_PATH];//will hold path of above dll
    GetCurrentDirectory(sizeof(winDir),winDir);//dll is in same dir as exe
    strcat(winDir,"\\exmple.dll");//concentrate dll name with path
    HINSTANCE DLL = LoadLibrary(winDir);//load example dll
    if(DLL==NULL)
    {
        FreeLibrary((HMODULE)DLL);//if load fails exit
        return 0;
    }
    mainDLLFunc=(Function)GetProcAddress((HMODULE)DLL, "main");
    //defined variable is used to assign a function from dll
    //GetProcAddress is used to locate function with pre defined extern name "DLL"
    //and matcing function name
    if(mainDLLFunc==NULL)
    {
        FreeLibrary((HMODULE)DLL);//if it fails exit
        return 0;
    }
    mainDLLFunc();//run exported function 
    FreeLibrary((HMODULE)DLL);
}

Upvotes: 4

Employed Russian
Employed Russian

Reputation: 213955

It changes the linkage of a function in such a way that the function is callable from C. In practice that means that the function name is not mangled.

Upvotes: 33

Mark Rushakoff
Mark Rushakoff

Reputation: 258478

It informs the C++ compiler to look up the names of those functions in a C-style when linking, because the names of functions compiled in C and C++ are different during the linking stage.

Upvotes: 27

Related Questions