Reputation: 6028
A class can act as a string through its __str__ method, or as a function via its __call__ method. Can it act as, say, a list, or a tuple?
class A (object):
def __???__ (self):
return (1, 2, 3)
>>> a = A()
>>> a * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)
EDIT...
Here's a better example to help clarify the above.
class Vector (object):
def __init__ (self):
self.vec = (1,2,3)
def __???__ (self):
# something like __repr__; non-string
return self.vec
class Widget (object):
def __init__ (self):
self.vector = Vector()
>>> w = Widget()
>>> w.vector
(1, 2, 3) # not a string representation (at least, before being repr'd here)
Basically, I want something like __repr__ that doesn't return a string, but returns a tuple (or list) when I simply invoke the name pointing to the Vector instance, but I don't want to lose the rest of the abilities in the instance, like access to other properties and methods. I also don't want to have to use w.vector.vec
to get to the data. I want vector to act like a tuple attribute of w, while still being able to do something like w.vector.whatever()
, or overriding __mul__ so I can scale the vector via w.vector * 5
. Possible?
Upvotes: 0
Views: 1028
Reputation: 19037
Depending on what your goal is, you can create a class that inherits from built-in classes like list
or tuple
:
>>> class A(tuple):
... def speak(self):
... print "Bark!"
...
>>> a = A((1,2,3)) # extra parens needed to distinguish single tuple arg from 3 scalar args
>>> a * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)
>>> a.speak()
Bark!
Given your Vector use case, subclassing tuple might well do the trick.
import math
class Vector(tuple):
def magnitude(self):
return math.sqrt( self[0]*self[0]+self[1]*self[1]+self[2]*self[2] )
Upvotes: 3
Reputation: 12486
For the specific behaviour in your example (A*3
gives three concatenated copies of the data in A
) you want to implement the __mul__()
operator.
For example, these are equivalent:
>>> a = [1,2,3]
>>> a*3
[1, 2, 3, 1, 2, 3, 1, 2, 3]
>>> a.__mul__(3)
[1, 2, 3, 1, 2, 3, 1, 2, 3]
>>>
More generally, if you want to implement a sequence type you have to implement all of the operations defined for sequence types. You have to define -
A[3]
means (__getitem__()
, __setitem__()
)A[1:10]
means (__getslice__()
)for item in A:
means (__iter__()
)and so on.
Here's the full list of methods defined on list
s:
>>> pprint.pprint(dict(list.__dict__))
{'__add__': <slot wrapper '__add__' of 'list' objects>,
'__contains__': <slot wrapper '__contains__' of 'list' objects>,
'__delitem__': <slot wrapper '__delitem__' of 'list' objects>,
'__delslice__': <slot wrapper '__delslice__' of 'list' objects>,
'__doc__': "list() -> new empty list\nlist(iterable) -> new list initialized from iterable's items",
'__eq__': <slot wrapper '__eq__' of 'list' objects>,
'__ge__': <slot wrapper '__ge__' of 'list' objects>,
'__getattribute__': <slot wrapper '__getattribute__' of 'list' objects>,
'__getitem__': <method '__getitem__' of 'list' objects>,
'__getslice__': <slot wrapper '__getslice__' of 'list' objects>,
'__gt__': <slot wrapper '__gt__' of 'list' objects>,
'__hash__': None,
'__iadd__': <slot wrapper '__iadd__' of 'list' objects>,
'__imul__': <slot wrapper '__imul__' of 'list' objects>,
'__init__': <slot wrapper '__init__' of 'list' objects>,
'__iter__': <slot wrapper '__iter__' of 'list' objects>,
'__le__': <slot wrapper '__le__' of 'list' objects>,
'__len__': <slot wrapper '__len__' of 'list' objects>,
'__lt__': <slot wrapper '__lt__' of 'list' objects>,
'__mul__': <slot wrapper '__mul__' of 'list' objects>,
'__ne__': <slot wrapper '__ne__' of 'list' objects>,
'__new__': <built-in method __new__ of type object at 0x1E1DACA8>,
'__repr__': <slot wrapper '__repr__' of 'list' objects>,
'__reversed__': <method '__reversed__' of 'list' objects>,
'__rmul__': <slot wrapper '__rmul__' of 'list' objects>,
'__setitem__': <slot wrapper '__setitem__' of 'list' objects>,
'__setslice__': <slot wrapper '__setslice__' of 'list' objects>,
'__sizeof__': <method '__sizeof__' of 'list' objects>,
'append': <method 'append' of 'list' objects>,
'count': <method 'count' of 'list' objects>,
'extend': <method 'extend' of 'list' objects>,
'index': <method 'index' of 'list' objects>,
'insert': <method 'insert' of 'list' objects>,
'pop': <method 'pop' of 'list' objects>,
'remove': <method 'remove' of 'list' objects>,
'reverse': <method 'reverse' of 'list' objects>,
'sort': <method 'sort' of 'list' objects>}
Upvotes: 2
Reputation: 24788
The class doesn't act as a string when you call str. It creates and returns a NEW string object. Basically when you call str(something)
on an object, this is what really happens:
a = str(someObject)
a = someObject.__str__()
So the str
function can basically be thought of as doing this:
def str(variable):
return variable.__str__()
The same is true when you call list()
, tuple()
, set()
and so on. If what I think you're asking is correct:
tuple()
, list()
, and set()
all call the __iter__()
method of a class, so what you'd want to do is:
class MyClass(object):
...
def __iter__(self):
...
return myIterable
Upvotes: 0