Reputation: 924
What i have:
Simplified schema of table, that will be very big:
id| integer | not null default nextval('table_id_seq'::regclass)
url_id | integer | not null
domain_id | integer | not null
position | integer | not null
The problem with the schema above is that I don't have the exact answer on how to partition it. Data for all periods is going to be used (NO queries will have date filters).
I thought about partitioning on "domain_id" field, but the problem is that it is hard to predict how many rows each partition will have.
My main question is:
Does is make sense to partition data if i don't use partition pruning and i am not going to delete old data?
What will be pros/cons of that ?
How will degrade my import speed, if i won't do partitioning?
Another question related to normalization:
Should url be exported to another table?
Pros of normalization
Pros of denormalization
Can anybody give me any advice? Thanks!
Upvotes: 6
Views: 7977
Reputation: 19471
Partitioning is most useful if you are going to either have selection criteria in most queries which allow the planner to skip access to most of the partitions most of the time, or if you want to periodically purge all rows that are assigned to a partition, or both. (Dropping a table is a very fast way to delete a large number of rows!) I have heard of people hitting a threshold where partitioning helped keep indexes shallower, and therefore boost performance; but really that gets back to the first point, because you effectively move the first level of the index tree to another place -- it still has to happen.
On the face of it, it doesn't sound like partitioning will help.
Normalization, on the other hand, may improve performance more than you expect; by keeping all those rows narrower, you can get more of them into each page, reducing overall disk access. I would do proper 3rd normal form normalization, and only deviate from that based on evidence that it would help. If you see a performance problem while you still have disk space for a second copy of the data, try creating a denormalized table and seeing how performance is compared to the normalized version.
Upvotes: 12
Reputation: 22855
With the given amount of data in mind, you'll be waiting on IO mostly. If possible, perform some tests with different HW configurations trying to get best IO figures for your scenarios. IMHO, 2 disks will not be enough after a while, unless there's something else behind the scenes.
Your table will be growing daily with a known ratio. And most likely it will be queried daily. As you haven't mentioned data being purged out (if it will be, then do partition it), this means that queries will run slower each day. At some point in time you'll start looking at how to optimize your queries. One of the possibilities is to parallelize query on the application level. But here some conditions should be met:
All answers should be given by the performance tests of different setups.
And as others mentioned, there're more benefits for DBA in partitioned tables, so I, personally, would go for partitioning any table that is expected to receive more then 5M rows per interval, be it day, week or month.
Upvotes: 0
Reputation: 308743
I think it makes sense, depending on your use cases. I don't know how far back in time your 30B row history goes, but it makes sense to partition if your transactional database doesn't need more than a few of the partitions you decide on.
For example, partitioning by month makes perfect sense if you only query for two months' worth of data at a time. The other ten months of the year can be moved into a reporting warehouse, keeping the transactional store smaller.
There are restrictions on the fields you can use in the partition. You'll have to be careful with those.
Get a performance baseline, do your partition, and remeasure to check for performance impacts.
Upvotes: 1