Reputation: 77
OK so I am just trying to work out the best way reduce band width between the GPU and CPU.
Particle Systems.
Should I be pre calculating most things on the CPU and sending it to the GPU this is includes stuff like positions, rotations, velocity, calculations for alpha and random numbers ect.
Or should I be doing as much as i can in the shaders and using the geometry shader as much as possible.
My problem is that the sort of app that I have written has to have a good few variables sent to the shaders for example, A user at run time will select emitter positions and velocity plus a lot more. The sorts of things that I am not sure how to tackle are things like "if a user wants a random velocity and gives a min and max value to have the random value select from, should this random value be worked out on the CPU and sent as a single value to the GPU or should both the min and max values be sent to the GPU and have a random function generator in the GPU do it? Any comments on reducing bandwidth and optimization are much appreciated.
Upvotes: 2
Views: 852
Reputation: 26429
Should I be pre calculating most things on the CPU and sending it to the GPU this is includes stuff like positions, rotations, velocity, calculations for alpha and random numbers ect.
Or should I be doing as much as i can in the shaders and using the geometry shader as much as possible.
Impossible to answer. Spend too much CPU time and performance will drop. Spend too much GPU time, performance will drop too. Transfer too much data, performance will drop. So, instead of trying to guess (I don't know what app you're writing, what's your target hardware, etc. Hell, you didn't even specify your target api and platform) measure/profile and select optimal method. PROFILE instead of trying to guess the performance. There are AQTime 7 Standard, gprof, and NVPerfKit for that (plus many other tools).
Do you actually have performance problem in your application? If you don't have any performance problems, then don't do anything. Do you have, say ten million particles per frame in real time? If not, there's little reason to worry, since a 600mhz cpu was capable of handling thousand of them easily 7 years ago. On other hand, if you have, say, dynamic 3d environmnet and particles must interact with it (bounce), then doing it all on GPU will be MUCH harder.
Anyway, to me it sounds like you don't have to optimize anything and there's no actual NEED to optimize. So the best idea would be to concentrate on some other things.
However, in any case, ensure that you're using correct way to transfer "dynamic" data that is frequently updated. In directX that meant using dynamic write-only vertex buffers with D3DLOCK_DISCARD|D3DLOCK_NOOVERWRITE. With OpenGL that'll probably mean using STREAM or DYNAMIC bufferdata with DRAW access. That should be sufficient to avoid major performance hits.
Upvotes: 3
Reputation: 1786
There's no single right answer to this. Here are some things that might help you make up your mind:
All that said, I think I would start with a CPU implementation and move some of the work to the GPU if it proves necessary and feasible.
Upvotes: 2