Reputation:
UPDATE
This was not supposed to be a benchmark, or a node vs ruby thing (I should left that more clear in the question, sorry). The point was to compare and demonstrate the diference between blocking and non blocking and how easy it is to write non blocking. I could compare using EventMachine for exemple, but node has this builtin, so it was the obvious choice.
I'm trying to demonstrate to some friends the advantage of nodejs (and it's frameworks) over other technologies, some way that is very simple to understand mainly the non blocking IO thing.
So I tried creating a (very little) Expressjs app and a Rails one that would do a HTTP request on google and count the resulting html length.
As expected (on my computer) Expressjs was 10 times faster than Rails through ab (see below). My questioon is if that is a "valid" way to demonstrate the main advantage that nodejs provides over other technologies. (or there is some kind of caching going on in Expressjs/Connect?)
Here is the code I used.
Expressjs
exports.index = function(req, res) {
var http = require('http')
var options = { host: 'www.google.com', port: 80, method: 'GET' }
var html = ''
var googleReq = http.request(options, function(googleRes) {
googleRes.on('data', function(chunk) {
html += chunk
})
googleRes.on('end', function() {
res.render('index', { title: 'Express', html: html })
})
});
googleReq.end();
};
Rails
require 'net/http'
class WelcomeController < ApplicationController
def index
@html = Net::HTTP.get(URI("http://www.google.com"))
render layout: false
end
end
This is the AB benchmark results
Expressjs
Server Software:
Server Hostname: localhost
Server Port: 3000
Document Path: /
Document Length: 244 bytes
Concurrency Level: 20
Time taken for tests: 1.718 seconds
Complete requests: 50
Failed requests: 0
Write errors: 0
Total transferred: 25992 bytes
HTML transferred: 12200 bytes
Requests per second: 29.10 [#/sec] (mean)
Time per request: 687.315 [ms] (mean)
Time per request: 34.366 [ms] (mean, across all concurrent requests)
Transfer rate: 14.77 [Kbytes/sec] received
Connection Times (ms)
min mean[+/-sd] median max
Connect: 0 0 0.1 0 0
Processing: 319 581 110.6 598 799
Waiting: 319 581 110.6 598 799
Total: 319 581 110.6 598 799
Percentage of the requests served within a certain time (ms)
50% 598
66% 608
75% 622
80% 625
90% 762
95% 778
98% 799
99% 799
100% 799 (longest request)
Rails
Server Software: WEBrick/1.3.1
Server Hostname: localhost
Server Port: 3001
Document Path: /
Document Length: 65 bytes
Concurrency Level: 20
Time taken for tests: 17.615 seconds
Complete requests: 50
Failed requests: 0
Write errors: 0
Total transferred: 21850 bytes
HTML transferred: 3250 bytes
Requests per second: 2.84 [#/sec] (mean)
Time per request: 7046.166 [ms] (mean)
Time per request: 352.308 [ms] (mean, across all concurrent requests)
Transfer rate: 1.21 [Kbytes/sec] received
Connection Times (ms)
min mean[+/-sd] median max
Connect: 0 180 387.8 0 999
Processing: 344 5161 2055.9 6380 7983
Waiting: 344 5160 2056.0 6380 7982
Total: 345 5341 2069.2 6386 7983
Percentage of the requests served within a certain time (ms)
50% 6386
66% 6399
75% 6402
80% 6408
90% 7710
95% 7766
98% 7983
99% 7983
100% 7983 (longest request)
Upvotes: 3
Views: 787
Reputation: 230336
To complement Sean's answer:
Benchmarks are useless. They show what you want to see. They don't show the real picture. If all your app does is proxy requests to google, then an evented server is a good choice indeed (node.js or EventMachine-based server). But often you want to do something more than that. And this is where Rails is better. Gems for every possible need, familiar sequential code (as opposed to callback spaghetti), rich tooling, I can go on.
When choosing one technology over another, assess all aspects, not just how fast it can proxy requests (unless, again, you're building a proxy server).
Upvotes: 5
Reputation: 15056
You're using Webrick to do the test. Off the bat the results are invalid because Webrick can only process on request at a time. You should use something like thin, which is built on top of eventmachine, which can process multiple requests at a time. Your time per request across all concurrent requests, transfer rate and connection times will improve dramatically making that change.
You should also keep in mind that request time is going to be different between each run because of network latency to Google. You should look at the numbers several times to get an average that you can compare.
In the end, you're probably not going to see a huge difference between Node and Rails in the benchmarks.
Upvotes: 1