Reputation: 10109
I have created a class MyClass
that contains a lot of simulation data. The class groups simulation results for different simulations that have a similar structure. The results can be retreived with a MyClass.get(foo)
method. It returns a dictionary with simulationID/array pairs, array being the value of foo
for each simulation.
Now I want to implement a method in my class to apply any function to all the arrays for foo
. It should return a dictionary with simulationID/function(foo) pairs.
For a function that does not need additional arguments, I found the following solution very satisfying (comments always welcome :-) ):
def apply(self, function, variable):
result={}
for k,v in self.get(variable).items():
result[k] = function(v)
return result
However, for a function requiring additional arguments I don't see how to do it in an elegant way. A typical operation would be the integration of foo
with bar
as x-values like np.trapz(foo, x=bar)
, where both foo
and bar
can be retreived with MyClass.get(...)
I was thinking in this direction:
def apply(self, function_call):
"""
function_call should be a string with the complete expression to evaluate
eg: MyClass.apply('np.trapz(QHeat, time)')
"""
result={}
for SID in self.simulations:
result[SID] = eval(function_call, locals=...)
return result
The problem is that I don't know how to pass the locals mapping object. Or maybe I'm looking in a wrong direction. Thanks on beforehand for your help.
Roel
Upvotes: 1
Views: 326
Reputation: 2388
I tried to recreate (the relevant part of) the class structure the way I am guessing it is set up on your side (it's always handy if you can provide a simplified code example for people to play/test).
What I think you are trying to do is translate variable names to variables that are obtained from within the class and then use those variables in a function that was passed in as well. In addition to that since each variable is actually a dictionary of values with a key (SID), you want the result to be a dictionary of results with the function applied to each of the arguments.
class test:
def get(self, name):
if name == "valA":
return {"1":"valA1", "2":"valA2", "3":"valA3"}
elif name == "valB":
return {"1":"valB1", "2":"valB2", "3":"valB3"}
def apply(self, function, **kwargs):
arg_dict = {fun_arg: self.get(sim_args) for fun_arg, sim_args in kwargs.items()}
result = {}
for SID in arg_dict[kwargs.keys()[0]]:
fun_kwargs = {fun_arg: sim_dict[SID] for fun_arg, sim_dict in arg_dict.items()}
result[SID] = function(**fun_kwargs)
return result
def joinstrings(string_a, string_b):
return string_a+string_b
my_test = test()
result = my_test.apply(joinstrings, string_a="valA", string_b="valB")
print result
So the apply method gets an argument dictionary, gets the class specific data for each of the arguments and creates a new argument dictionary with those (arg_dict).
The SID keys are obtained from this arg_dict and for each of those, a function result is calculated and added to the result dictionary.
The result is:
{'1': 'valA1valB1', '3': 'valA3valB3', '2': 'valA2valB2'}
The code can be altered in many ways, but I thought this would be the most readable. It is of course possible to join the dictionaries instead of using the SID's from the first element etc.
Upvotes: 1
Reputation: 8012
You have two ways. The first is to use functools.partial:
foo = self.get('foo')
bar = self.get('bar')
callable = functools.partial(func, foo, x=bar)
self.apply(callable, variable)
while the second approach is to use the same technique used by partial, you can define a function that accept arbitrary argument list:
def apply(self, function, variable, *args, **kwds):
result={}
for k,v in self.get(variable).items():
result[k] = function(v, *args, **kwds)
return result
Note that in both case the function signature remains unchanged. I don't know which one I'll choose, maybe the first case but I don't know the context on you are working on.
Upvotes: 2