Reputation: 1438
I am trying to write an induction hypothesis specifically for proving properties of even numbers. I formulated and proved the following:
Theorem ind_hyp_on_evens:
forall (p : nat -> Prop),
(p 0 -> (forall n, p n -> p (S (S n))) ->
forall n, p (n + n)).
Proof.
intros p P0 P1.
intro n.
assert(p (n + n) /\ p (S (S (n + n)))).
induction n as [| n'].
split. unfold plus. assumption.
unfold plus.
apply (P1 0).
assumption.
destruct IHn' as [A B].
split.
rewrite <- plus_Snm_nSm.
rewrite -> ? plus_Sn_m.
assumption.
rewrite <- plus_Snm_nSm.
rewrite -> ? plus_Sn_m.
apply (P1 (S (S (n' + n')))).
assumption.
destruct H as [H1 H2].
assumption. Qed.
Despite the fact that it's proved, any attempt to use it results in the error message: "Error: Not the right number of induction arguments."
Can someone please tell me what is the problem with the induction hypothesis, or otherwise, how to apply it??
Thanks,
Mayer
Upvotes: 4
Views: 949
Reputation: 4264
I believe induction
assumes that any induction principle that will be used has the
fixed form
forall ... (P : SomeType -> Type) ..., (* or ->Set or ->Prop *)
... ->
forall (v : SomeType), P v
Your ind_hyp_on_evens
matches only P (plus n n)
which seems to confuse induction
.
If you have a suitable goal, say forall n, is_even (n+n)
, you can manually do the
steps that induction
normally does and extend that to handle the special form.
intro n0; (* temp. var *)
pattern (n0 + n0); (* restructure as (fun x => (is_even x)) (n0+n0) *)
refine (ind_hyp_on_evens _ _ _ n0); (* apply ind. scheme *)
clear n0; [| intros n IHn ]. (* clear temp., do one 'intros' per branch *)
I don't know if it's possible to pack that up as a general helper tactic for any induction scheme, packing these steps up as a per-scheme Ltac
tactic should work however.
Upvotes: 2
Reputation: 800
You could consider writing an inductive predicate that describes even numbers (code not tested):
Inductive even : nat -> Prop :=
| evenO : even O
| evenSSn : forall n, even n -> even (S (S n))
.
Coq will generate the induction principle automatically.
You would have to prove that even n
holds before being able to perform induction on the "evenness" of n.
Upvotes: 0