Reputation: 18745
I am working on "LINQ to Objects" library for C++11. I would like to do smth like this:
// filtering elements by their value
arr.where( [](double d){ return d < 0; } )
// filtering elements by their value and position
arr.where( [](double d, int i){ return i%2==0; } )
I down want to write arr.where_i( ... )
- it's ugly.
So i need function/method overloading by lambda-type...
This is my solution:
template<typename F>
auto my_magic_func(F f) -> decltype(f(1))
{
return f(1);
}
template<typename F>
auto my_magic_func(F f, void * fake = NULL) -> decltype(f(2,3))
{
return f(2,3);
}
int main()
{
auto x1 = my_magic_func([](int a){ return a+100; });
auto x2 = my_magic_func([](int a, int b){ return a*b; });
// x1 == 1+100
// x2 == 2*3
}
Is it SFINAE solution? What can you suggest me?
Upvotes: 3
Views: 473
Reputation: 35449
You certainly want SFINAE in your solution. Generally speaking, the result would look something like:
template<
typename Functor
, typename std::enable_if<
special_test<Functor>::value
, int
>::type = 0
>
return_type
my_magic_func(Functor f);
template<
typename Functor
, typename std::enable_if<
!special_test<Functor>::value
, int
>::type = 0
>
return_type
my_magic_func(Functor f);
such that only one overload would be active at any one time -- all that remains now is carefully crafting that special_test
to have the behaviour we want. This is a careful balancing act as you don't want the test to be too specific; otherwise we lose generality. Quite a shame when writing generic code. You haven't given too much information (e.g. are you strictly interested in support for lambdas? monomorphic functors? polymorphic functors?), but I will assume for now that we have access to a value_type
alias which would correspond to double
in your example.
As such, here's an example condition that will check that a given type is Callable (that's a Standard concept) with signature bool(value_type)
; i.e. that it's a predicate of sorts:
template<typename Functor, typename ValueType>
struct is_unary_predicate {
typedef char (&accepted)[1];
typedef char (&refused)[2];
void consume(bool);
template<
typename X
, typename Y
, typename = decltype( consume(std::declval<X>()(std::declval<Y>())) )
>
accepted
test(X&&, Y&&);
refused test(...);
static constexpr bool value =
sizeof test(std::declval<Functor>(), std::declval<ValueType>())
== sizeof(accepted);
};
Personally I have an is_callable<F, Signature>
trait so that I would only need to write something like template<typename Functor, typename ValueType> using is_unary_predicate = is_callable<Functor, bool(ValueType)>;
(and similarly I could have an is_binary_predicate
alias instead of letting the second overload of my_magic_func
be a catch-all). Perhaps you'd want to use a similar trait for future uses of SFINAE (although it may be somewhat painful to write without variadic templates).
Upvotes: 2
Reputation: 476970
Maybe something variadic:
#include <utility>
template <typename F, typename ...Args>
decltype(f(std::declval<Args>()...) my_magic_func(F f, Args &&... args)
{
return f(std::forward<Args>(args)...);
}
Edit: You can also use typename std::result_of<F(Args...)>::type
for the return type, which does the same thing.
Upvotes: 3