Reputation: 37
First off, I found a lot of information on this topic, but no solutions that solved the issue unfortunately.
I'm simply trying to regulate my C++ program to run at 60 iterations per second. I've tried everything from GetClockTicks() to GetLocalTime() to help in the regulation but every single time I run the program on my Windows Server 2008 machine, it runs slower than on my local machine and I have no clue why!
I understand that "clock" based function calls return CPU time spend on the execution so I went to GetLocalTime and then tried to differentiate between the start time and the stop time then call Sleep((FPS / 1000) - millisecondExecutionTime)
My local machine is quite faster than the servers CPU so obviously the thought was that it was going off of CPU ticks, but that doesn't explain why the GetLocalTime doesn't work. I've been basing this method off of http://www.lazyfoo.net/SDL_tutorials/lesson14/index.php changing the get_ticks() with all of the time returning functions I could find on the web.
For example take this code:
#include <Windows.h>
#include <time.h>
#include <string>
#include <iostream>
using namespace std;
int main() {
int tFps = 60;
int counter = 0;
SYSTEMTIME gStart, gEnd, start_time, end_time;
GetLocalTime( &gStart );
bool done = false;
while(!done) {
GetLocalTime( &start_time );
Sleep(10);
counter++;
GetLocalTime( &end_time );
int startTimeMilli = (start_time.wSecond * 1000 + start_time.wMilliseconds);
int endTimeMilli = (end_time.wSecond * 1000 + end_time.wMilliseconds);
int time_to_sleep = (1000 / tFps) - (endTimeMilli - startTimeMilli);
if (counter > 240)
done = true;
if (time_to_sleep > 0)
Sleep(time_to_sleep);
}
GetLocalTime( &gEnd );
cout << "Total Time: " << (gEnd.wSecond*1000 + gEnd.wMilliseconds) - (gStart.wSecond*1000 + gStart.wMilliseconds) << endl;
cin.get();
}
For this code snippet, run on my computer (3.06 GHz) I get a total time (ms) of 3856 whereas on my server (2.53 GHz) I get 6256. So it potentially could be the speed of the processor though the ratio of 2.53/3.06 is only .826797386 versus 3856/6271 is .614893956.
I can't tell if the Sleep function is doing something drastically different than expected though I don't see why it would, or if it is my method for getting the time (even though it should be in world time (ms) not clock cycle time. Any help would be greatly appreciated, thanks.
Upvotes: 2
Views: 438
Reputation: 317
What about rendering (iterating) based on the time elapsed between rendering of each frame? Consider creating a void render(double timePassed)
function and render depending on the timePassed
parameter instead of putting program to sleep.
Imagine, for example, you want to render a ball falling or bouncing. You would know it's speed, acceleration and all other physics that you need. Calculate the position of the ball based on timePassed
and all other physics parameters (speed, acceleration, etc.).
Or if you prefer, you could just skip the render()
function execution if time passed is a value to small, instead of puttin program to sleep.
Upvotes: 0
Reputation: 47954
For a duty cycle that fast, you can use a high accuracy timer (like QueryPerformanceTimer) and a busy-wait loop.
If you had a much lower duty cycle, but still wanted precision, then you could Sleep for part of the time and then eat up the leftover time with a busy-wait loop.
Another option is to use something like DirectX to sync yourself to the VSync interrupt (which is almost always 60 Hz). This can make a lot of sense if you're coding a game or a/v presentation.
Windows is not a real-time OS, so there will never be a perfect way to do something like this, as there's no guarantee your thread will be scheduled to run exactly when you need it to.
Note that in the remarks for Sleep, the actual amount of time will be at least one "tick" and possible one whole "tick" longer than the delay you requested before the thread is scheduled to run again (and then we have to assume the thread is scheduled). The "tick" can vary a lot depending on hardware and the version of Windows. It is commonly in the 10-15 ms range, and I've seen it as bad as 19 ms. For 60 Hz, you need 16.666 ms per iteration, so this is obviously not nearly precise enough to give you what you need.
Upvotes: 0
Reputation: 8594
In your main loop you can
int main()
{
// Timers
LONGLONG curTime = NULL;
LONGLONG nextTime = NULL;
Timers::GameClock::GetInstance()->GetTime(&nextTime);
while (true) {
Timers::GameClock::GetInstance()->GetTime(&curTime);
if ( curTime > nextTime && loops <= MAX_FRAMESKIP ) {
nextTime += Timers::GameClock::GetInstance()->timeCount;
// Business logic goes here and occurr based on the specified framerate
}
}
}
using this time library
include "stdafx.h"
LONGLONG cacheTime;
Timers::SWGameClock* Timers::SWGameClock::pInstance = NULL;
Timers::SWGameClock* Timers::SWGameClock::GetInstance ( ) {
if (pInstance == NULL) {
pInstance = new SWGameClock();
}
return pInstance;
}
Timers::SWGameClock::SWGameClock(void) {
this->Initialize ( );
}
void Timers::SWGameClock::GetTime ( LONGLONG * t ) {
// Use timeGetTime() if queryperformancecounter is not supported
if (!QueryPerformanceCounter( (LARGE_INTEGER *) t)) {
*t = timeGetTime();
}
cacheTime = *t;
}
LONGLONG Timers::SWGameClock::GetTimeElapsed ( void ) {
LONGLONG t;
// Use timeGetTime() if queryperformancecounter is not supported
if (!QueryPerformanceCounter( (LARGE_INTEGER *) &t )) {
t = timeGetTime();
}
return (t - cacheTime);
}
void Timers::SWGameClock::Initialize ( void ) {
if ( !QueryPerformanceFrequency((LARGE_INTEGER *) &this->frequency) ) {
this->frequency = 1000; // 1000ms to one second
}
this->timeCount = DWORD(this->frequency / TICKS_PER_SECOND);
}
Timers::SWGameClock::~SWGameClock(void)
{
}
with a header file that contains the following:
// Required for rendering stuff on time
#pragma once
#define TICKS_PER_SECOND 60
#define MAX_FRAMESKIP 5
namespace Timers {
class SWGameClock
{
public:
static SWGameClock* GetInstance();
void Initialize ( void );
DWORD timeCount;
void GetTime ( LONGLONG* t );
LONGLONG GetTimeElapsed ( void );
LONGLONG frequency;
~SWGameClock(void);
protected:
SWGameClock(void);
private:
static SWGameClock* pInstance;
}; // SWGameClock
} // Timers
This will ensure that your code runs at 60FPS (or whatever you put in) though you can probably dump the MAX_FRAMESKIP as that's not truly implemented in this example!
Upvotes: 1
Reputation: 3929
You could try a WinMain
function and use the SetTimer
function and a regular message loop (you can also take advantage of the filter mechanism of GetMessage( ... )
) in which you test for the WM_TIMER
message with the requested time and when your counter reaches the limit do a PostQuitMessage(0)
to terminate the message loop.
Upvotes: 0
Reputation: 28829
For one thing, Sleep's default resolution is the computer's quota length - usually either 10ms or 15ms, depending on the Windows edition. To get a resolution of, say, 1ms, you have to issue a timeBeginPeriod(1), which reprograms the timer hardware to fire (roughly) once every millisecond.
Upvotes: 3