Dan
Dan

Reputation: 13160

What is the main performance gain from garbage collection?

The llvm documentation says:

In practice, however, the locality and performance benefits of using aggressive garbage collection techniques dominates any low-level losses.

So what is it, exactly, that causes the performance gain when using garbage collection as opposed to manually managing memory? (besides the obvious decrease in code writing time) Is the benefit solely that performing heap compaction increases spatial locality and cache utilization? Or is there something else that helps more, like deleting everything at once?

Upvotes: 2

Views: 1376

Answers (4)

supercat
supercat

Reputation: 81189

One factor not yet mentioned is that, especially in multi-threaded systems, it can sometimes be difficult to predict with certainty what object will end up holding the last surviving reference to some other object. If one doesn't have to worry about object graphs that might contain cycles, it's possible to use reference counts for this purpose. Before copying a reference to an object, increment its reference count. Before destroying a reference to an object, decrement its reference count. It decrementing the reference count makes it hit zero, destroy the object as well as the reference. Such an approach works well on computers with only one CPU core; if only one thread can actually be running at any given time, one doesn't have to worry about what will happen if two threads try to adjust the same object's reference count simultaneously. Unfortunately, in systems with multiple CPU cores, any CPU that wants to adjust a reference count would have to coordinate that action with all the other CPUs to ensure that two CPUs never hit the counter at the exact same time. Such coordination is "free" with a single CPU, but is relatively expensive in multi-core systems.

When using a batch-mode garbage collector, object references may generally be freely assigned, copied, and destroyed, without inter-CPU coordination. It will periodically be necessary to have all the CPUs stop and run a garbage-collection cycle, but requiring all the CPUs to coordinate with each other once every few seconds or so is a lot cheaper than requiring them to coordinate with each other on every single object-reference assignment.

Upvotes: 0

gbjbaanb
gbjbaanb

Reputation: 52679

I doubt locality helps performance at all - admittedly small objects tend to be created at the same time in the same area of the heap (but this applies to C as well), over time, these small objects that remain will be compacted into a closely related area of the heap and it is supposedly this that give you an advantage over C-style allocations. However, show me a program that uses just these small objects and I'll show you a program that does sod all. Show me a program that passes all objects that are to be used on the stack and I'll show you one that screams with speed.

The de-allocation of memory is a performance benefit, short-term as they do not need to be de-allocated. However, when the garbage collector does kick in, this benefit disappears. Usually though, the collection occurs when nothing else is happening in the system (theoretically) so the cost is effectively nullified.

Compaction of the heap also helps allocation, all allocations can come from the beginning of the heap, and the memory manager doesn't have to walk the heap looking for the next free space block of the right size. However, traditional systems can gain the same amount of speed by using multiple fixed-block heaps (which mean you always allocate from a heap for the size of block you want, and you always allocate a fixed block, so walking the heap is just to find the first free block, and this can be removed using a bitmap)

So all in all, there isn't much of a benefit at all, except in benchmarks of course. In my experience the GC can and will jump in and slow you down dramatically at just the wrong time, usually when the system memory is getting filled because the user has done something like load a new page that required a lot of memory allocations.... which in turn required a collection.

It also has a tendency to use a lot of memory - 'memory is cheap' is the mantra of GC languages, so programs are written with this in mind, which means memory allocations are much more common, especially for temporaries and intermediate objects. Just look to StringBuilder classes for the evidence that this is well known. Strings may be 'solved' using this, but many other objects are still allocated with wild abandon. Any program that uses a lot of memory will find itself struggling with RAM IO - all that memory has to be brought into the CPU caches to be used, the more memory you use, the more IO your CPU MM will have to do and that can kill performance in the wrong circumstances.

In addition, when a GC occurs, you have to handle Finalised objects too, this isn't quite as bad as it used to be, but it can still halt your program while the finalisers are run.

Old Java GCs were dreadful for perf, though a lot of research has made them significantly better, they are still not perfect.

EDIT: one more thing about localisation, imagine creating an array and adding a few items, then do a load of allocations, then you want to add another item to the array - with a GC system the added array element will not be localised, even after a compaction, each object in the array will be stored as an individual item on the heap. This is why I think the localisation issue is not as big a deal as it's made out to be. Now, compare that to an array that is allocated with a buffer and objects are allocated within the buffer space. That may require a re-alloc and copy to add a new item, but reading and modifying it is super fast.

Upvotes: 1

Hans Passant
Hans Passant

Reputation: 941705

On modern processors the memory caches are King. Suffering a cache miss can stall the processor for hundreds of cpu cycles, waiting for the slow bus to supply the data.

Making the caches effective requires locality of reference. In other words, if the next memory access is close to the previous one then the odds that the data is already in the cache are high.

A garbage collector can help a lot to make that work out well. The big win is not the collection, it is its ability to rebuild the object graph and reorganize the data structure while doing so. Compacting.

Imagine the typical data structure, an array of pointers to objects. Which is slowly being built up while, say, reading a bunch of strings from a file and turning them into field values of an object. Allocated objects will be scatter-shot in the address space doing so. Long lived objects pointed-to by the array separated by the worker objects, like strings. Iterating that array later is going to be pretty slow.

Until the garbage collector runs and rebuilds the data structure. Putting all of the pointed-to objects in order.

Now iterating the collection is very fast, since accessing element N makes it very likely that element N+1 is readily available. If not in the L1 cache then very good odds for L2 or L3 (if you have it).

Very big win, it is the one feature that made garbage collection competitive with explicit memory management. With the explicit kind having the problem of not supporting moving objects because it will invalidate a pointer.

Upvotes: 2

Maurice Naftalin
Maurice Naftalin

Reputation: 10533

I can only speak for the Oracle (ex-Sun) and IBM JVMs; their efficiency relies on the fact that newly-created objects are unlikely to live very long. So segregating them into their own area allows that area to be frequently compacted, since with few survivors that's a cheap operation. Frequent compaction means that free space can be kept contiguous, so object creation is also cheap because there's no free chain to traverse and no memory fragmentation.

Manual memory management schemes are rarely this efficient because this is a relatively complex way of doing things that is unlikely to be reinvented for each application. These garbage collectors have evolved and been optimised over a longer period and with more effort than individual applications ever receive. It would be surprising and disappointing if they weren't much more performant.

Upvotes: 2

Related Questions