Reputation: 761
I would like to create a 3D array in Python (2.7) to use like this:
distance[i][j][k]
And the sizes of the array should be the size of a variable I have. (nnn)
I tried using:
distance = [[[]*n]*n]
but that didn't seem to work.
I can only use the default libraries, and the method of multiplying (i.e.,[[0]*n]*n
) wont work because they are linked to the same pointer and I need all of the values to be individual
Upvotes: 54
Views: 378871
Reputation: 627
I just want notice that
distance = [[[0 for k in range(n)] for j in range(n)] for i in range(n)]
can be shortened to
distance = [[[0] * n for j in range(n)] for i in range(n)]
Upvotes: 2
Reputation: 138
There are many ways to address your problem.
def multi_dimensional_list(value, *args):
#args dimensions as many you like. EG: [*args = 4,3,2 => x=4, y=3, z=2]
#value can only be of immutable type. So, don't pass a list here. Acceptable value = 0, -1, 'X', etc.
if len(args) > 1:
return [ multi_dimensional_list(value, *args[1:]) for col in range(args[0])]
elif len(args) == 1: #base case of recursion
return [ value for col in range(args[0])]
else: #edge case when no values of dimensions is specified.
return None
Eg:
>>> multi_dimensional_list(-1, 3, 4) #2D list
[[-1, -1, -1, -1], [-1, -1, -1, -1], [-1, -1, -1, -1]]
>>> multi_dimensional_list(-1, 4, 3, 2) #3D list
[[[-1, -1], [-1, -1], [-1, -1]], [[-1, -1], [-1, -1], [-1, -1]], [[-1, -1], [-1, -1], [-1, -1]], [[-1, -1], [-1, -1], [-1, -1]]]
>>> multi_dimensional_list(-1, 2, 3, 2, 2 ) #4D list
[[[[-1, -1], [-1, -1]], [[-1, -1], [-1, -1]], [[-1, -1], [-1, -1]]], [[[-1, -1], [-1, -1]], [[-1, -1], [-1, -1]], [[-1, -1], [-1, -1]]]]
P.S If you are keen to do validation for correct values for args i.e. only natural numbers, then you can write a wrapper function before calling this function.
def convert_single_to_multi(value, max_dim):
dim_count = len(max_dim)
values = [0]*dim_count
for i in range(dim_count-1, -1, -1): #reverse iteration
values[i] = value%max_dim[i]
value /= max_dim[i]
return values
def convert_multi_to_single(values, max_dim):
dim_count = len(max_dim)
value = 0
length_of_dimension = 1
for i in range(dim_count-1, -1, -1): #reverse iteration
value += values[i]*length_of_dimension
length_of_dimension *= max_dim[i]
return value
Since, these functions are inverse of each other, here is the output:
>>> convert_single_to_multi(convert_multi_to_single([1,4,6,7],[23,45,32,14]),[23,45,32,14])
[1, 4, 6, 7]
>>> convert_multi_to_single(convert_single_to_multi(21343,[23,45,32,14]),[23,45,32,14])
21343
Upvotes: 1
Reputation: 306
You can also use a nested for
loop like shown below
n = 3
arr = []
for x in range(n):
arr.append([])
for y in range(n):
arr[x].append([])
for z in range(n):
arr[x][y].append(0)
print(arr)
Upvotes: 4
Reputation: 516
"""
Create 3D array for given dimensions - (x, y, z)
@author: Naimish Agarwal
"""
def three_d_array(value, *dim):
"""
Create 3D-array
:param dim: a tuple of dimensions - (x, y, z)
:param value: value with which 3D-array is to be filled
:return: 3D-array
"""
return [[[value for _ in xrange(dim[2])] for _ in xrange(dim[1])] for _ in xrange(dim[0])]
if __name__ == "__main__":
array = three_d_array(False, *(2, 3, 1))
x = len(array)
y = len(array[0])
z = len(array[0][0])
print x, y, z
array[0][0][0] = True
array[1][1][0] = True
print array
Prefer to use numpy.ndarray
for multi-dimensional arrays.
Upvotes: 5
Reputation: 1270
def n_arr(n, default=0, size=1):
if n is 0:
return default
return [n_arr(n-1, default, size) for _ in range(size)]
arr = n_arr(3, 42, 3)
assert arr[2][2][2], 42
Upvotes: 0
Reputation: 15285
d3 = [[[0 for col in range(4)]for row in range(4)] for x in range(6)]
d3[1][2][1] = 144
d3[4][3][0] = 3.12
for x in range(len(d3)):
print d3[x]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 144, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [3.12, 0, 0, 0]]
[[0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0], [0, 0, 0, 0]]
Upvotes: 5
Reputation: 34438
You should use a list comprehension:
>>> import pprint
>>> n = 3
>>> distance = [[[0 for k in xrange(n)] for j in xrange(n)] for i in xrange(n)]
>>> pprint.pprint(distance)
[[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]]
>>> distance[0][1]
[0, 0, 0]
>>> distance[0][1][2]
0
You could have produced a data structure with a statement that looked like the one you tried, but it would have had side effects since the inner lists are copy-by-reference:
>>> distance=[[[0]*n]*n]*n
>>> pprint.pprint(distance)
[[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]],
[[0, 0, 0], [0, 0, 0], [0, 0, 0]]]
>>> distance[0][0][0] = 1
>>> pprint.pprint(distance)
[[[1, 0, 0], [1, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0], [1, 0, 0]],
[[1, 0, 0], [1, 0, 0], [1, 0, 0]]]
Upvotes: 81
Reputation: 24439
The right way would be
[[[0 for _ in range(n)] for _ in range(n)] for _ in range(n)]
(What you're trying to do should be written like (for NxNxN)
[[[0]*n]*n]*n
but that is not correct, see @Adaman comment why).
Upvotes: 10
Reputation: 69082
numpy.array
s are designed just for this case:
numpy.zeros((i,j,k))
will give you an array of dimensions ijk, filled with zeroes.
depending what you need it for, numpy may be the right library for your needs.
Upvotes: 52
Reputation: 715
If you insist on everything initializing as empty, you need an extra set of brackets on the inside ([[]] instead of [], since this is "a list containing 1 empty list to be duplicated" as opposed to "a list containing nothing to duplicate"):
distance=[[[[]]*n]*n]*n
Upvotes: -3