Reputation: 7997
Q. How can I prevent values < 0 being shown in a ggplot2 facet plot for just one of three different variables plotted, each of different magnitudes?
I have made the following facet plot.
As you can see, the value plotted on the y-axis is significantly different for each variable, but using scales = "free"
resolves that issue.
I want to suppress the values less than zero in the "profit_margin" facet (coloured in blue at the bottom) by either limiting the scale or setting values of less than zero to zero, but I cannot work out how to accomplish this. I could directly zap the values in the data frame but I would prefer to leave the data untouched. I tried using a function in scale_y_continuous() but was unable to make any headway.
Here is the code used to generate the above plot:
require(lubridate)
require(reshape2)
require(ggplot2)
require(scales)
## Create dummy time series data
set.seed(12345)
monthsback <- 12
startdate <- as.Date(paste(year(now()),month(now()),"1",sep = "-")) - months(monthsback)
mydf <- data.frame(mydate = seq(as.Date(startdate), by = "month", length.out = monthsback),
sales = runif(monthsback, min = 600, max = 800),
profit = runif(monthsback, min = -50, max = 80))
## Add calculation based on data
mydf$profit_margin <- mydf$profit/mydf$sales
## Reshape...
mymelt <- melt(mydf, id = c('mydate'))
## Plot
p <- ggplot(data = mymelt, aes(x = mydate, y = value, fill = variable)) +
geom_bar(stat = "identity") +
facet_wrap( ~ variable, ncol = 1, scales = "free")
print(p)
And this was my attempt to use a function and lapply to set sub-zero values to zero:
require(lubridate)
require(reshape2)
require(ggplot2)
require(scales)
## Create dummy time series data
set.seed(12345)
monthsback <- 12
startdate <- as.Date(paste(year(now()),month(now()),"1",sep = "-")) - months(monthsback)
mydf <- data.frame(mydate = seq(as.Date(startdate), by = "month", length.out = monthsback),
sales = runif(monthsback, min = 600, max = 800),
profit = runif(monthsback, min = -50, max = 80))
## Add calculation based on data
mydf$profit_margin <- mydf$profit/mydf$sales
## Reshape...
mymelt <- melt(mydf, id = c('mydate'))
scales_function <- function(myvar, myvalue){
mycount <- 1
newval <- lapply(myvalue, function(myarg) {
myarg <- ifelse(myvar[mycount] == "profit_margin", ifelse(myarg < 0, 0, myarg), myarg)
}
)
return(newval)
}
## Plot
p <- ggplot(data = mymelt, aes(x = mydate, y = value, fill = variable)) +
geom_bar(stat = "identity") +
facet_wrap( ~ variable, ncol = 1, scales = "free") +
scale_y_continuous(breaks = scales_function(mymelt$variable, mymelt$value))
print(p)
Upvotes: 2
Views: 974
Reputation: 115392
You can leave the data untouched, but just plot a subset.
ggplot(data = subset(mymelt,!((variable == 'profit_margin') & value < 0)),
aes(x = mydate, y = value, fill = variable)) +
geom_bar(stat = "identity") +
facet_wrap( ~ variable, ncol = 1, scales = "free")
Or replace within the call
ggplot(data = mymelt, aes(x = mydate, y = replace(value, (variable == 'profit_margin') & value <0, NA), fill = variable)) +
geom_bar(stat = "identity") +
facet_wrap( ~ variable, ncol = 1, scales = "free") +
ylab('value')
Upvotes: 5