Reputation: 11
I read through all subset sum topics and still have issues with implementing the algorithm for the following problem.
Given the array A of N integers (N<=20) where
and an integer K (K<=20).
Rules:
Example:
N=6, integers: 1, 1, 2, 3, 4, 5
K=4
Possible coverages:
K=5
Possible coverages:
Goal:
For given array A and integer K, find all possible "coverages". I need all coverages, not only one which covers most of the array items.
I have tried with two approaches:
Well, the second approach works and works fast. But I found scenarios where some coverages are not found.
I would appreciate if somebody offered idea for solving this problem.
I hope I explained the problem well.
Thanks.
Upvotes: 1
Views: 773
Reputation: 955
I don't have ready answer for that, but I recommend to take a look on 'Bin packing problem' it could be usefull here.
The main problem is to find all possible sums giving number K. So try this:
Collection All_Possible_Sums_GivingK;
find_All_Sums_Equal_To_K(Integer K, Array A)
{
/* this function after finding result
add it to global Collection AllPossibleSumsGivingK; */
find_All_Elements_Equal_To_K(Integer K, Array A);
Array B = Remove_Elements_Geater_Or_Equal_To_K(Integer K, Array A);
for all a in A {
find_All_Sums_Equal_To_K(Integer K-a, Array B-a)
}
}
Upvotes: 1
Reputation: 964
I modified this from an earlier answer I gave to a different subset sum variant: https://stackoverflow.com/a/10612601/120169
I am running it here on the K=8 case with the above numbers, where we reuse 1 in two different places for one of the two "coverages". Let me know how it works for you.
public class TurboAdder2 {
// Problem inputs
// The unique values
private static final int[] data = new int[] { 1, 2, 3, 4, 5 };
// counts[i] = the number of copies of i
private static final int[] counts = new int[] { 2, 1, 1, 1, 1 };
// The sum we want to achieve
private static int target = 8;
private static class Node {
public final int index;
public final int count;
public final Node prevInList;
public final int prevSum;
public Node(int index, int count, Node prevInList, int prevSum) {
this.index = index;
this.count = count;
this.prevInList = prevInList;
this.prevSum = prevSum;
}
}
private static Node sums[] = new Node[target+1];
// Only for use by printString and isSolvable.
private static int forbiddenValues[] = new int[data.length];
private static boolean isSolvable(Node n) {
if (n == null) {
return true;
} else {
while (n != null) {
int idx = n.index;
// We prevent recursion on a value already seen.
// Don't use any indexes smaller than lastIdx
if (forbiddenValues[idx] + n.count <= counts[idx]) {
// Verify that none of the bigger indexes are set
forbiddenValues[idx] += n.count;
boolean ret = isSolvable(sums[n.prevSum]);
forbiddenValues[idx] -= n.count;
if (ret) {
return true;
}
}
n = n.prevInList;
}
return false;
}
}
public static void printString(String prev, Node n, int firstIdx, int lastIdx) {
if (n == null) {
printString(prev +" |", sums[target], -1, firstIdx);
} else {
if (firstIdx == -1 && !isSolvable(sums[target])) {
int lidx = prev.lastIndexOf("|");
if (lidx != -1) {
System.out.println(prev.substring(0, lidx));
}
}
else {
while (n != null) {
int idx = n.index;
// We prevent recursion on a value already seen.
// Don't use any indexes larger than lastIdx
if (forbiddenValues[idx] + n.count <= counts[idx] && (lastIdx < 0 || idx < lastIdx)) {
// Verify that none of the bigger indexes are set
forbiddenValues[idx] += n.count;
printString((prev == null ? "" : (prev + (prev.charAt(prev.length()-1) == '|' ? " " : " + ")))+data[idx]+"*"+n.count, sums[n.prevSum], (firstIdx == -1 ? idx : firstIdx), idx);
forbiddenValues[idx] -= n.count;
}
n = n.prevInList;
}
}
}
}
public static void main(String[] args) {
for (int i = 0; i < data.length; i++) {
int value = data[i];
for (int count = 1, sum = value; count <= counts[i] && sum <= target; count++, sum += value) {
for (int newsum = sum+1; newsum <= target; newsum++) {
if (sums[newsum - sum] != null) {
sums[newsum] = new Node(i, count, sums[newsum], newsum - sum);
}
}
}
for (int count = 1, sum = value; count <= counts[i] && sum <= target; count++, sum += value) {
sums[sum] = new Node(i, count, sums[sum], 0);
}
}
printString(null, sums[target], -1, -1);
}
}
Upvotes: 0