Reputation: 10557
I'm using R and ggplot2 to analyze some statistics from basketball games. I'm new to R and ggplot, and I like the results I'm getting, given my limited experience. But as I go along, I find that my code gets repetitive; which I dislike.
I created several plots similar to this one:
Code:
efgPlot <- ggplot(gmStats, aes(EFGpct, Nrtg)) +
stat_smooth(method = "lm") +
geom_point(aes(colour=plg_ShortName, shape=plg_ShortName)) +
scale_shape_manual(values=as.numeric(gmStats$plg_ShortName))
Only difference between the plots is the x-value; next plot would be:
orPlot <- ggplot(gmStats, aes(ORpct, Nrtg)) +
stat_smooth(method = "lm") + ... # from here all is the same
How could I refactor this, such that I could do something like:
efgPlot <- getPlot(gmStats, EFGpct, Nrtg))
orPlot <- getPlot(gmStats, ORpct, Nrtg))
Update
I think my way of refactoring this isn't really "R-ish" (or ggplot-ish if you will); based on baptiste's comment below, I solved this without refactoring anything into a function; see my answer below.
Upvotes: 2
Views: 347
Reputation: 10557
Although Joran's answer helpt me a lot (and he accurately answers my question), I eventually solved this according to baptiste's suggestion:
# get the variablesI need from the stats data frame:
forPlot <- gmStats[c("wed_ID","Nrtg","EFGpct","ORpct","TOpct","FTTpct",
"plg_ShortName","Home")]
# melt to long format:
forPlot.m <- melt(forPlot, id=c("wed_ID", "plg_ShortName", "Home","Nrtg"))
# use fact wrap to create 4 plots:
p <- ggplot(forPlot.m, aes(value, Nrtg)) +
geom_point(aes(shape=plg_ShortName, colour=plg_ShortName)) +
scale_shape_manual(values=as.numeric(forPlot.m$plg_ShortName)) +
stat_smooth(method="lm") +
facet_wrap(~variable,scales="free")
Which gives me:
Upvotes: 1
Reputation: 173577
The key to this sort of thing is using aes_string
rather than aes
(untested, of course):
getPlot <- function(data,xvar,yvar){
p <- ggplot(data, aes_string(x = xvar, y = yvar)) +
stat_smooth(method = "lm") +
geom_point(aes(colour=plg_ShortName, shape=plg_ShortName)) +
scale_shape_manual(values=as.numeric(data$plg_ShortName))
print(p)
invisible(p)
}
aes_string
allows you to pass variable names as strings, rather than expressions, which is more convenient when writing functions. Of course, you may not want to hard code to color and shape scales, in which case you could use aes_string
again for those.
Upvotes: 6