Reputation: 1531
Suppose I have the following numpy arrays:
>>a
array([[0, 0, 2],
[2, 0, 1],
[2, 2, 1]])
>>b
array([[2, 2, 0],
[2, 0, 2],
[1, 1, 2]])
that I then vertically stack
c=np.dstack((a,b))
resulting in:
>>c
array([[[0, 2],
[0, 2],
[2, 0]],
[[2, 2],
[0, 0],
[1, 2]],
[[2, 1],
[2, 1],
[1, 2]]])
From this I wish to, for each 3rd dimension of c, check which combination is present in this subarray, and then number it accordingingly with the index of the list-match. I've tried the following, but it is not working. The algorithm is simple enough with double for-loops, but because c is very large, it is prohibitively slow.
classes=[(0,0),(2,1),(2,2)]
out=np.select( [h==c for h in classes], range(len(classes)), default=-1)
My desired output would be
out = [[-1,-1,-1],
[3, 1,-1],
[2, 2,-1]]
Upvotes: 0
Views: 866
Reputation: 25813
Here is another way to get what you want, thought I would post it in case it's useful to anyone.
import numpy as np
a = np.array([[0, 0, 2],
[2, 0, 1],
[2, 2, 1]])
b = np.array([[2, 2, 0],
[2, 0, 2],
[1, 1, 2]])
classes=[(0,0),(2,1),(2,2)]
c = np.empty(a.shape, dtype=[('a', a.dtype), ('b', b.dtype)])
c['a'] = a
c['b'] = b
classes = np.array(classes, dtype=c.dtype)
classes.sort()
out = classes.searchsorted(c)
out = np.where(c == classes[out], out+1, -1)
print out
#array([[-1, -1, -1]
# [ 3, 1, -1]
# [ 2, 1, -1]])
Upvotes: 1
Reputation: 8595
You can test the a and b arrays separately like this:
clsa = (0,2,2)
clesb = (0,1,2)
np.select ( [(ca==a) & (cb==b) for ca,cb in zip (clsa, clsb)], range (3), default = -1)
which gets your desired result (except returns 0,1,2 instead of 1,2,3).
Upvotes: 1
Reputation: 8538
How about this:
(np.array([np.array(h)[...,:] == c for h in classes]).all(axis = -1) *
(2 + np.arange(len(classes)))[:, None, None]).max(axis=0) - 1
It returns, what you actually need
array([[-1, -1, -1],
[ 3, 1, -1],
[ 2, 2, -1]])
Upvotes: 1