Reputation: 653
How do you convert between Cartesian and Polar (and back) coordinate systems in 3D space? Preferably with a c# example but anything would really be appreciated. Thanks!
Edit When 20% of the change is taken into account (not forming a sphere)
Edit 2
private void Spherise() {
for (int i = 0; i < vertices.Count; i++) {
float radius = this.radius;
float longitude = 0;
float latitude = 0;
float sphereRadius = 32;
Color color = vertices[i].Color;
ToPolar(vertices[i].Position - centre, out radius, out longitude, out latitude);
Vector3 position = ToCartesian(sphereRadius, longitude, latitude) + centre;
Vector3 normal = vertices[i].Position - centre;
normal.Normalize();
const float lerpAmount = 0.6f;
Vector3 lerp = (position - vertices[i].Position) * lerpAmount + vertices[i].Position;
vertices[i] = new VertexPositionColorNormal(lerp, color, normal);
}
}
private void ToPolar(Vector3 cart, out float radius, out float longitude, out float latitude) {
radius = (float)Math.Sqrt((double)(cart.X * cart.X + cart.Y * cart.Y + cart.Z * cart.Z));
longitude = (float)Math.Acos(cart.X / Math.Sqrt(cart.X * cart.X + cart.Y * cart.Y)) * (cart.Y < 0 ? -1 : 1);
latitude = (float)Math.Acos(cart.Z / radius) * (cart.Z < 0 ? -1 : 1);
}
private Vector3 ToCartesian(float radius, float longitude, float latitude) {
float x = radius * (float)(Math.Sin(latitude) * Math.Cos(longitude));
float y = radius * (float)(Math.Sin(latitude) * Math.Sin(longitude));
float z = radius * (float)Math.Cos(latitude);
return new Vector3(x, y, z);
}
Upvotes: 5
Views: 12944
Reputation: 160
In order to take in account the 4 quadrants:
r = sqrt(x * x + y * y + z * z)
long = atan2(y,x);
lat = acos(z / r);
That is implemented in the following functions, that I checked in the 4 quadrants:
double modulo(vector <double> xyz) { return sqrt(xyz[0] * xyz[0] + xyz[1] * xyz[1] + xyz[2] * xyz[2] + 1e-130); }
void cartesian_to_polar(vector <double> a, double& r, double& lat, double& lon) { r = modulo(a); lon = atan2(a[1], a[0]); lat = acos(a[2] / r); }
void polar_to_cartesian(double r, double lat, double lon, vector <double>& a) { a[2] = r * cos(lat); a[0] = r * sin(lat) * cos(lon); a[1] = r * sin(lat) * sin(lon); }
Upvotes: 1
Reputation: 21
It depends on how the azimuth is measured - from the horizontal plane or from the vertical axis. I've read the Wikipedia article, but If you measure it as geographical latitude (Equator=0, Poles =+90 and -90) then you should use asin and sin.
I'm using c# in a 3D-Modelling software and there the azimuth is measured with respect to the xy-Plane and not to the z-Axis. In my case the formulas are:
lat = asin(z / r)
x = r * cos(lat) * cos(long)
y = r * cos(lat) * sin(long)
z = r * sin(lat)
Upvotes: 2
Reputation: 56809
From Cartesian to Polar:
r = sqrt(x * x + y * y + z * z)
long = acos(x / sqrt(x * x + y * y)) * (y < 0 ? -1 : 1)
lat = acos(z / r)
From Polar to Cartesian:
x = r * sin(lat) * cos(long)
y = r * sin(lat) * sin(long)
z = r * cos(lat)
I haven't tested it yet.
You can rewrite to reduce number of floating point operations.
Upvotes: 7