Reputation: 3260
I think the best way to form this question is with an example...so, the actual reason I decided to ask about this is because of because of Problem 55 on Project Euler. In the problem, it asks to find the number of Lychrel numbers below 10,000. In an imperative language, I would get the list of numbers leading up to the final palindrome, and push those numbers to a list outside of my function. I would then check each incoming number to see if it was a part of that list, and if so, simply stop the test and conclude that the number is NOT a Lychrel number. I would do the same thing with non-lychrel numbers and their preceding numbers.
I've done this before and it has worked out nicely. However, it seems like a big hassle to actually implement this in Haskell without adding a bunch of extra arguments to my functions to hold the predecessors, and an absolute parent function to hold all of the numbers that I need to store.
I'm just wondering if there is some kind of tool that I'm missing here, or if there are any standards as a way to do this? I've read that Haskell kind of "naturally caches" (for example, if I wanted to define odd numbers as odds = filter odd [1..]
, I could refer to that whenever I wanted to, but it seems to get complicated when I need to dynamically add elements to a list.
Any suggestions on how to tackle this?
Thanks.
PS: I'm not asking for an answer to the Project Euler problem, I just want to get to know Haskell a bit better!
Upvotes: 2
Views: 219
Reputation: 185681
I believe you're looking for memoizing. There are a number of ways to do this. One fairly simple way is with the MemoTrie package. Alternatively if you know your input domain is a bounded set of numbers (e.g. [0,10000)) you can create an Array where the values are the results of your computation, and then you can just index into the array with your input. The Array approach won't work for you though because, even though your input numbers are below 10,000, subsequent iterations can trivially grow larger than 10,000.
That said, when I solved Problem 55 in Haskell, I didn't bother doing any memoization whatsoever. It turned out to just be fast enough to run (up to) 50 iterations on all input numbers. In fact, running that right now takes 0.2s to complete on my machine.
Upvotes: 7