Reputation: 10493
Is there any algorithm that can approximate the given polygon with n non overlapping rectangles that gives the maximum coverage? By maximum coverage I mean, the sum of the rectangle areas are maximized. Rectangles are not necessarily equal sized.
The polygons I am dealing are convex. If exact solution is hard/expensive to find (which I am expecting it to be), simple good heuristics are welcome too.
Edit I always thought of approximating the polygon with rectangles inside polygon, but solutions with rectangles not totally inside polygons are also fine. If that is the case, maximization of the area becomes minimization of the area.
Edit 2 I forgot to mention that these rectangles are orthogonal rectangles, i.e. aligned with axises.
Upvotes: 9
Views: 6043
Reputation: 1260
I realize this is a really old question but I recently stumbled across a similar problem where I had to try to approximate a polygon with rectangles. Using some of the ideas presented here and elsewhere, I started with an inscribed rectangle and generated rectangles around the inscribed rectangle to provide the general shape of the polygon.
This approach works well for convex polygons and reasonable well for some concave polygons - especially if you take an iterative approach (e.g. feed output rectangles as inputs to another iteration).
For extremely concave shapes, you might consider breaking up the polygon into convex hulls and then applying the technique I described above. The Bayazit implementation looks very promising.
In case anyone is interested, I have posted my implementation using inscribed rectangles here: https://github.com/pborissow/Poly2Rect
Upvotes: 5
Reputation: 6358
Add the initial polygon to Q
Remove a polygon P from Q
10 . Take the next longest side of P, A, and goto 5
11 . Project a red rectangle up from A. Find the 2 points where it intersects P, B and C:
12 . Choose the longer(B) and finalise the green rectangle
13 . Add the remaining figures (D, E and F) to Q
14 . Goto 3
Upvotes: 5
Reputation: 78316
One approach would be to create a (in the general case rectangular) bounding box for your polygon. Calculate the difference between the area of the bounding box and the area of the polygon. If the difference is small enough, you're done, if not, continue ...
Divide the box into 4 equal-sized rectangles, 2x2. Figure out which of these rectangles is entirely inside the polygon. Calculate the difference between the total area of the rectangles inside the polygon and of the polygon. If the difference is small enough you're done, if not continue ...
Divide each of the 4 rectangles into 4 sub-rectangles ... if at any stage you find that a rectangle is either fully inside or fully outside your polygon you can remove it from the list of rectangles to subdivide at the next iteration.
In other words, use a quadtree to divide the space containing your polygon and develop it to the extent necessary to meet your accuracy criteria.
Upvotes: 8
Reputation: 81882
A first idea, maybe others can improve on it.
Upvotes: 2