ISTB
ISTB

Reputation: 1817

MPI and OpenMP on Desktop CPUs

I was just wondering how is it possible that OpenMP (shared memory) and MPI (distributed memory) could run on normal desktop CPUs like i7 for example. Is there some kind of a virtual machine that can simulate shared and distributed memory on these CPUs? I am asking it because when learnig OpenMP and MPI, the structures of supercomputers is shown, with shared memory or different nodes for distributed memory, each node with its own processor and memory.

Upvotes: 4

Views: 2682

Answers (2)

Hristo Iliev
Hristo Iliev

Reputation: 74385

MPI assumes nothing about how and where MPI processes run. As far as MPI is concerned, processes are just entites that have a unique address known as their rank and MPI gives them the ability to send and receive data in the form of messages. How exactly are the messages transfered is left to the implementation. The model is so general that MPI can run virtually on any platform imaginable.

OpenMP deals with shared memory programming using threads. Threads are just concurrent instruction flows that can access a shared memory space. They can execute in a timesharing fashion on a single CPU core or they can execute on multiple cores inside a single CPU chip, or they can be distributed among multiple CPUs connected together by some sophisticated network that allows them to access each others memory.

Given all that, MPI does not require that each process executes on a dedicated CPU core or that millions of cores should be necessarily put on separate boards connected with some high speed network - performance does, as well as technical limitations. You can happily run a 100 processes MPI job on a single CPU core though performance would be very very bad but it will still work (given enough memory is available). The same applies to OpenMP - it does not require that each thread is scheduled on a dedicated CPU core but doing so gives the best performance.

That's why MPI and OpenMP are called abstractions - they are general enough that the execution hardware can vary greatly while source code is kept the same.

Upvotes: 7

High Performance Mark
High Performance Mark

Reputation: 78316

A modern multicore-CPU-based PC is a shared-memory computer. It is a sensible approximation to think of each core as a processor, and that they all have equal access to the same RAM. This approximation hides a lot of details of processor and chip architectures.

It has always (well, perhaps not always, but for almost as long as MPI has been around) been possible to use message-passing (of which MPI is one standard) on a shared-memory computer so that you can run the same MPI-enabled program as you would on a genuinely distributed-memory machine.

At the application level a programmer only cares about calls to MPI routines. At the systems level the MPI run-time translates these calls into, well on a cluster or supercomputer, into instructions to send stuff over the interconnect. On a shared-memory computer it could instead translate these calls into instructions to send stuff over the internal bus.

This is by no means a comprehensive introduction to the topics you've raised, but that's what Google and all the published sources out there are for.

Upvotes: 4

Related Questions