Reputation: 4672
The following piece of code is used to print the time in the logs:
#define PRINTTIME() struct tm * tmptime;
time_t tmpGetTime;
time(&tmpGetTime);
tmptime = localtime(&tmpGetTime);
cout << tmptime->tm_mday << "/" <<tmptime->tm_mon+1 << "/" << 1900+tmptime->tm_year << " " << tmptime->tm_hour << ":" << tmptime->tm_min << ":" << tmptime->tm_sec<<">>";
Is there any way to add milliseconds to this?
Upvotes: 13
Views: 61159
Reputation: 219488
New answer for old question using C++11 or C++14 and this free, open-source library:
#include "tz.h"
#include <iostream>
int
main()
{
using namespace date;
using namespace std;
using namespace std::chrono;
auto now = make_zoned(current_zone(), floor<milliseconds>(system_clock::now()));
cout << format("%e/%m/%Y %T", now) << '\n';
}
This just output for me:
16/01/2017 15:34:32.167
which is my current local date and time to millisecond precision. By eliminating the floor<milliseconds>()
you will automatically get whatever precision your system_clock
has.
If you wanted the result as a UTC timestamp instead of a local timestamp, it is even easier:
auto now = floor<milliseconds>(system_clock::now());
cout << format("%e/%m/%Y %T", now) << '\n';
And if you want a UTC timestamp and you aren't picky about the precision or the format, you can just:
cout << system_clock::now() << '\n';
which just output for me:
2017-01-16 20:42:11.267245
Upvotes: 1
Reputation: 513
In Ubuntu 16.04 this worked for me...
const std::string currentDateTime() {
char fmt[64], buf[64];
struct timeval tv;
struct tm *tm;
gettimeofday(&tv, NULL);
tm = localtime(&tv.tv_sec);
strftime(fmt, sizeof fmt, "%Y-%m-%d %H:%M:%S.%%06u", tm);
snprintf(buf, sizeof buf, fmt, tv.tv_usec);
return buf;
}
Then, with...
std::cout << currentDateTime();
I get...
2016-12-29 11:09:55.331008
Upvotes: 1
Reputation: 15210
To have millisecond precision you have to use system calls specific to your OS.
In Linux you can use
#include <sys/time.h>
timeval tv;
gettimeofday(&tv, 0);
// then convert struct tv to your needed ms precision
timeval
has microsecond precision.
In Windows you can use:
#include <Windows.h>
SYSTEMTIME st;
GetSystemTime(&st);
// then convert st to your precision needs
Of course you can use Boost to do that for you :)
Upvotes: 23
Reputation: 6217
//C++11 Style:
cout << "Time in Milliseconds =" <<
chrono::duration_cast<chrono::milliseconds>(chrono::steady_clock::now().time_since_epoch()).count()
<< std::endl;
cout << "Time in MicroSeconds=" <<
chrono::duration_cast<chrono::microseconds>(chrono::steady_clock::now().time_since_epoch()).count()
<< std::endl;
Upvotes: 17
Reputation: 21
If you don't want to use any OS-specific code, you can use the ACE package which supplies the ACE_OS::gettimeofday
function for most standard operating systems.
For example:
ACE_Time_Value startTime = ACE_OS::gettimeofday();
do_something();
ACE_Time_Value endTime = ACE_OS::gettimeofday();
cout << "Elapsed time: " << (endTime.sec() - startTime.sec()) << " seconds and " << double(endTime.usec() - startTime.usec()) / 1000 << " milliseconds." << endl;
This code will work regardless of your OS (as long as ACE supports this OS).
Upvotes: 2
Reputation: 34367
You need a timer with a higher resolution in order to capture milliseconds. Try this:
int cloc = clock();
//do something that takes a few milliseconds
cout << (clock() - cloc) << endl;
This is of course dependent on your OS.
Upvotes: 4
Reputation: 6446
The high resolution timers are usually gettimeofday on Linux style platforms and QueryPerformanceCounter on Windows.
You should be aware that timing the duration of a single operation (even with a high resolution timer) will not yield accurate results. There are too many random factors at play. To get reliable timing information, you should run the task to be timed in a loop and compute the average task time. For this type of timing, the clock() function should be sufficient.
Upvotes: 2