Reputation: 6149
I have a C++ code containig many for-loops parallelized with openMP on a 8-thread computer.
But the speed of execution with single thread is faster than parallel 8 thread. I was told that if the load of the for-loops increases parallelization will become efficient.
Here with load I mean for example maximum number of iterations for a loop. The thing is I dont have a chance to compare single and 8-thread parallel code for a huge amount of data.
Should I use parallel code anyway? Is it true that parallelization efficiency will increase with load of for-loops?
Upvotes: 0
Views: 1266
Reputation: 78316
The canonical use case for OpenMP is the distribution among a team of threads of the iterations of a high iteration count loop with the condition that the loop iterations have no direct or indirect dependencies.
You can spot what I mean by direct dependencies by considering the question Does the order of loop iteration execution affect the results ?. If, for example, iteration N+1 uses the results of iteration N you have such a dependency, running the loop iterations in reverse order will change the output of the routine.
By indirect dependencies I mean mainly data races, in which threads have to coordinate their access to shared data, in particular they have to ensure that writes to shared variables happen in the correct sequence.
In many cases you can redesign a loop-with-dependencies to remove those dependencies.
IF you have a high iteration count loop which has no such dependencies THEN you have a candidate for good speed-up with OpenMP. Here are the buts:
Now, turning to your questions:
Finally, you can't become a serious parallel computationalist without measuring run times under various combinations of circumstances and learning what the measurements you make are telling you. If you can't compare sequential and parallel execution for huge amounts of data, you'll have to measure them for modest amounts of data and understand the lessons you learn before making predictions about behaviour when dealing with huge amounts of data.
Upvotes: 4