Reputation: 340
Using the algorithm on Page 4 of the following paper, I am attempting to compute an all pairs shortest paths matrix.
http://www.waset.org/journals/ijcms/v3/v3-5-43.pdf
I am confused by lines 7 and 8 (of the algorithm) and subsequently, 11 and 12, because assigning s1 the value of j and using both these it the comparison on line 8 seems ambiguous to me. I am wondering if perhaps I am reading the indentation wrong. I am new to algorithms so please be patient with me.
while(flag != false){
for(int i=0; i<n;i++){
aMin = Integer.MAX_VALUE;
bMin = Integer.MAX_VALUE;
for(int j=0; j<n;j++){
// Line 7 of the algorithm
if((distanceMatrix[i][j] < aMin) && (j != i) && (BR[i][j] == false)){
aMin = distanceMatrix[i][j];
BR[i][j] = true;
a[i] = j;
int s1 = j; // End of line 7
// Line 8 of the algorithm
if(distanceMatrix[i][j] < distanceMatrix[i][s1])
BR[i][s1] = false; // End of line 8
}
}
for(int j=0; j<n; j++){
// Line 11 of the algorithm
if((distanceMatrix[i][j] < bMin) && (j != i) && (j != a[i]) && (BR[i][j] == false)){
bMin = distanceMatrix[i][j];
BR[i][j] = true;
b[i] = j;
int s2 = j; // end of line 11
// Line 12 of the algorithm
if(distanceMatrix[i][j] < distanceMatrix[i][s2])
BR[i][s2] = false; // end of line 12
}
}
}
for(int i=0; i <n; i++){
for(int j=0; j<n; j++){
int t1 = distanceMatrix[i][a[i]] + distanceMatrix[a[i]][j];
int t2 = distanceMatrix[i][b[i]] + distanceMatrix[b[i]][j];
distanceMatrix[i][j] = Math.min(distanceMatrix[i][j], Math.min(t1,t2));
distanceMatrix[j][i] = distanceMatrix[i][j];
}
}
flag = true;
for(int i=0; i<n;i++){
// Line 19 of the algorithm
for(int j=0; j<n; j++){
temp[i][j] = distanceMatrix[i][j]; // end of line 19
// Line 20 of the algorithm
if (distanceMatrix[i][j] == temp[i][j])
flag = false; // end of line 20
}
}
}
Additionally, I understand by looking at line 19 and 20 in the algorithm, it will get stuck in a loop because flag will always be true.
Upvotes: 1
Views: 381
Reputation: 43487
I think it should be like this:
4) for i ← 1 to n do amin← ∞ ; bmin ← ∞
5) for j ← 1 to n do
6) if D[i, j] < amin and j = i and BR[i, j] = 0 then
7) amin ← D[i, j] ; BR[i, j] ← 1 ; a[i] ← j ; s1 ← j
8) if D[i, j] < D[i, s1] then BR[i, s1] ← 0
So as you can see, s1
might not always be j
: it will always be <= j
however.
So the second if
is not inside the first. Otherwise, it doesn't make sense, because s1 == j
always and you cannot have D[i, j] < D[i, j]
.
Upvotes: 1