user1492449
user1492449

Reputation: 101

Divide a list into multiple lists based on a bin size

I have a list containing more than 100,000 values in it.

I need to divide the list into multiple smaller lists based on a specific bin width say 0.1. Can anyone help me how to write a python program to do this?

my list looks like this

-0.234
-0.04325
-0.43134
-0.315
-0.6322
-0.245
-0.5325
-0.6341
-0.5214
-0.531
-0.124
-0.0252

I would like to have an output like this

list1 = [-0.04325, -0.0252] 
list2 = [-0.124] 
list3 = [-0.234, -0.245 ] 
list4 = [-0.315] 
list5 = [-0.43134] 
list6 = [-0.5325, -0.5214, -0.531] 
list7 = [-0.6322, -0.6341]

Upvotes: 10

Views: 13186

Answers (6)

pylang
pylang

Reputation: 44475

Binning can be done with itertools.groupby:

import itertools as it


iterable = ['-0.234', '-0.04325', '-0.43134', '-0.315', '-0.6322', '-0.245',
            '-0.5325', '-0.6341', '-0.5214', '-0.531', '-0.124', '-0.0252']

a,b,c,d,e,f,g = [list(g) for k, g in it.groupby(sorted(iterable), key=lambda x: x[:4])]
c
# ['-0.234', '-0.245']

Note: this simple key function assumes the values in the iterable are between -0.0 and -10.0. Consider lambda x: "{:.1f}".format(float(x)) for general cases.

See also this post for details on how groupby works.

Upvotes: 4

pylang
pylang

Reputation: 44475

We can make bins with more_itertools, a third-party library.

Given

iterable = (
    "-0.234 -0.04325 -0.43134 -0.315 -0.6322 -0.245 "
    "-0.5325 -0.6341 -0.5214 -0.531 -0.124 -0.0252"
).split()

iterable
# ['-0.234', '-0.04325', '-0.43134', '-0.315', '-0.6322', '-0.245', '-0.5325', '-0.6341', '-0.5214', '-0.531', '-0.124', '-0.0252']

Code

import more_itertools as mit


keyfunc = lambda x: float("{:.1f}".format(float(x)))
bins = mit.bucket(iterable, key=keyfunc)

keys = [-0.0,-0.1,-0.2, -0.3,-0.4,-0.5,-0.6]
a,b,c,d,e,f,g = [list(bins[k]) for k in keys]
c
# ['-0.234', '-0.245']

Details

We can bin by the key function, which we define to format numbers to a single precision, i.e. -0.213 to -0.2.

keyfunc = lambda x: float("{:.1f}".format(float(x)))
bins = mit.bucket(iterable, key=keyfunc)

These bins are accessed by the keys defined by the key function:

c = list(bins[-0.2])
c
# ['-0.234', '-0.245']

Access all bins by iterating keys:

f = lambda x: float("{:.1f}".format(float(x)))
bins = mit.bucket(iterable, key=keyfunc)

keys = [-0.0,-0.1,-0.2, -0.3,-0.4,-0.5,-0.6]
for k in keys:
    print("{} --> {}".format(k, list(bins[k])))

Output

-0.0 --> ['-0.04325', '-0.0252']
-0.1 --> ['-0.124']
-0.2 --> ['-0.234', '-0.245']
-0.3 --> ['-0.315']
-0.4 --> ['-0.43134']
-0.5 --> ['-0.5325', '-0.5214', '-0.531']
-0.6 --> ['-0.6322', '-0.6341']

List comprehension and unpacking is another option (see Code example).

See also more_itertools docs for more details.

Upvotes: 0

the wolf
the wolf

Reputation: 35522

This works:

l=[-0.234, -0.04325, -0.43134, -0.315, -0.6322, -0.245,
-0.5325, -0.6341, -0.5214, -0.531, -0.124, -0.0252]

d={}
for k,v in zip([int(i*10) for i in l],l):
   d.setdefault(k,[]).append(v)

LoL=[d[e] for e in sorted(d.keys(), reverse=True)]

for i,l in enumerate(LoL,1):
    print('list',i,l)    

Prints:

list 1 [-0.04325, -0.0252]
list 2 [-0.124]
list 3 [-0.234, -0.245]
list 4 [-0.315]
list 5 [-0.43134]
list 6 [-0.5325, -0.5214, -0.531]
list 7 [-0.6322, -0.6341]

How it works:

1: The list
>>> l=[-0.234, -0.04325, -0.43134, -0.315, -0.6322, -0.245,
... -0.5325, -0.6341, -0.5214, -0.531, -0.124, -0.0252]

2: Produce the keys:
>>> [int(i*10) for i in l]
[-2, 0, -4, -3, -6, -2, -5, -6, -5, -5, -1, 0]

3: Produce tuples to put in the dict:
>>> zip([int(i*10) for i in l],l)
[(-2, -0.234), (0, -0.04325), (-4, -0.43134), (-3, -0.315), (-6, -0.6322), 
 (-2, -0.245), (-5, -0.5325), (-6, -0.6341), (-5, -0.5214), (-5, -0.531), 
 (-1, -0.124), (0, -0.0252)]

4: unpack the tuples into k,v and loop over the list
>>>for k,v in zip([int(i*10) for i in l],l):

5: add k key to a dict (if not there) and append the float value to a list associated 
   with that key:
    d.setdefault(k,[]).append(v)

I suggest a Python tutorial on these statements.

Upvotes: 3

fraxel
fraxel

Reputation: 35269

Here is a simple and nice way using numpys digitize:

>>> import numpy as np
>>> mylist = np.array([-0.234, -0.04325, -0.43134, -0.315, -0.6322, -0.245,
                       -0.5325, -0.6341, -0.5214, -0.531, -0.124, -0.0252])
>>> bins = np.arange(0,-1,-0.1)
>>> for i in xrange(1,10):
...     mylist[np.digitize(mylist,bins)==i]
... 
array([-0.04325, -0.0252 ])
array([-0.124])
array([-0.234, -0.245])
array([-0.315])
array([-0.43134])
array([-0.5325, -0.5214, -0.531 ])
array([-0.6322, -0.6341])
array([], dtype=float64)
array([], dtype=float64)

digitize, returns an array with the index value for the bin that each element falls into.

Upvotes: 11

Levon
Levon

Reputation: 143047

Is this what you want? (Sample output would have been helpful :)

f = [-0.234, -0.04325, -0.43134, -0.315, -0.6322, -0.245, 
     -0.5325, -0.6341, -0.5214, -0.531, -0.124, -0.0252]

import numpy as np
data = np.array(f)
hist, edges = np.histogram(data, bins=10)
print hist

yields:

 [2 3 0 1 0 1 2 0 1 2]

This SO question assigning points to bins might be helpful.

Upvotes: 4

Antimony
Antimony

Reputation: 39451

This will create a dict where each value is a list of elements that fit in a bin.

import collections
bins = collections.defaultdict(list)
binId = lambda x: int(x*10)
for val in vals:
    bins[binId(val)].append(val)

Upvotes: 6

Related Questions