Reputation: 14097
While monitoring our application in Perf Mon I noticed that the % of Time In GC is anywhere from 20 - 60% while our application is performing a long running process (varies between 30 seconds to 1.5 minutes). This seems a bit excessive to me. This raises two important questions.
Upvotes: 12
Views: 11349
Reputation: 19456
Am I correct that this excessive?
Yes, you are correct
How can I figure out why route causes GC spikes?
1.- Do take a look at PerfView
PerfView is a performance-analysis tool that helps isolate CPU- and memory-related performance issues.
See Also: Improving Managed Code Performance
2.- See if GC.Collect or GC.WaitForPendingFinalizers is being called anywhere in your code or third party library. The latter can cause high CPU utilization.
Upvotes: 3
Reputation: 19765
Another reason could be lots of gen-1 or gen-2 collections, each of which takes MUCH more time and is caused by hanging on to objects a longer time.
I've seen this happen in web apps when buggy objects hang onto actual page objects - forcing the page to live as long as the other objects referring to them.
Breaking the link between objects and pages (in this case) caused GC to drop to very low values. Our site now has 100+ hits/second and GC time is typically 1% or less.
Upvotes: 1
Reputation: 28162
Yes, this does sound excessive. Reducing the amount of GC would probably be the single best step you could take to reducing the runtime of your application (if that is your goal).
A high "% time in GC" is typically caused by allocating and then throwing away thousands or millions of objects. A good way to find out what's going on is to use a memory profiler tool.
Microsoft provides the free CLR Profiler. This will show you every allocation, but will make your app run 10-60 times slower. You may need to run it on less input data so that it can finish analyzing in a reasonable amount of time.
A great commercial tool is SciTech's .NET Memory Profiler. This imposes much less runtime overhead, and there is a free trial available. By taking multiple snapshots while your process is running, you can find out what type of objects are being frequently allocated (and then destroyed).
Once you've identified the source of the allocations, you then need to examine the code and figure out how those allocations can be reduced. While there are no one-size-fits-all answers, some things I've encountered in the past include:
Upvotes: 13