Reputation: 842
I am trying to multiply two float
s as follows:
float number1 = 321.12;
float number2 = 345.34;
float rexsult = number1 * number2;
The result I want to see is 110895.582, but when I run the code it just gives me 110896. Most of the time I'm having this issue. Any calculator gives me the exact result with all decimals. How can I achive that result?
edit : It's C code. I'm using XCode iOS simulator.
Upvotes: 1
Views: 16073
Reputation: 5411
Printf also does some rounding. Consider http://codepad.org/LLweoeHp:
float t = 0.1f;
printf("result: %f\n", t);
--
result: 0.100000
Well, it looks fine. Why? Because printf defaulted to some precision and rounded up the output. Let's dial in 50 places after decimal point: http://codepad.org/frUPOvcI
float t = 0.1f;
printf("result: %.50f\n", t);
--
result: 0.10000000149011611938476562500000000000000000000000
That's different, isn't it? After 625 the float ran out of capacity to hold more data, that's why we see zeroes. A double can hold more digits, but 0.1 in binary is not finite. Double has to give up, eventually: http://codepad.org/RAd7Yu2r
double t = 0.1;
printf("result: %.70f\n", t);
--
result: 0.1000000000000000055511151231257827021181583404541015625000000000000000
In your example, 321.12 alone is enough to cause trouble: http://codepad.org/cgw3vUKn
float t = 321.12f;
printf("and the result is: %.50f\n", t);
result: 321.11999511718750000000000000000000000000000000000000
This is why one has to round up floating point values before presenting them to humans.
Calculator programs don't use floats or doubles at all. They implement decimal number format. eg:
struct decimal
{
int mantissa; //meaningfull digits
int exponent; //number of decimal zeroes
};
Ofc that requires reinventing all operations: addition, substraction, multiplication and division. Or just look for a decimal library.
Upvotes: 1
Reputation: 213258
There's a lot of rounding going on.
float a = 321.12; // this number will be rounded
float b = 345.34; // this number will also be rounded
float r = a * b; // and this number will be rounded too
printf("%.15f\n", r);
I get 110895.578125000000000 after the three separate roundings.
If you want more than 6 decimal digits' worth of precision, you will have to use double
and not float
. (Note that I said "decimal digits' worth", because you don't get decimal digits, you get binary.) As it stands, 1/2 ULP of error (a worst-case bound for a perfectly rounded result) is about 0.004.
If you want exactly rounded decimal numbers, you will have to use a specialized decimal library for such a task. A double
has more than enough precision for scientists, but if you work with money everything has to be 100% exact. No floating point numbers for money.
Unlike integers, floating point numbers take some real work before you can get accustomed to their pitfalls. See "What Every Computer Scientist Should Know About Floating-Point Arithmetic", which is the classic introduction to the topic.
Edit: Actually, I'm not sure that the code rounds three times. It might round five times, since the constants for a
and b
might be rounded first to double-precision and then to single-precision when they are stored. But I don't know the rules of this part of C very well.
Upvotes: 11
Reputation: 62048
You will never get the exact result that way.
First of all, number1 ≠ 321.12 because that value cannot be represented exactly in a base-2 system. You'll need an infinite number of bits for it.
The same holds for number2 ≠ 345.34.
So, you begin with inexact values to begin with.
Then the product will get rounded because multiplication gives you double the number of significant digits but the product has to be stored in float
again if you multiply floats.
You probably want to use a 10-based system for your numbers. Or, in case your numbers only have 2 decimal digits of the fractional, you can use integers (32-bit integers are sufficient in this case, but you may end up needing 64-bit):
32112 * 34534 = 1108955808.
That represents 321.12 * 345.34 = 110895.5808.
Upvotes: 3
Reputation: 3980
Since you are using C you could easily set the precision by using "%.xf" where x is the wanted precision.
For example:
float n1 = 321.12;
float n2 = 345.34;
float result = n1 * n2;
printf("%.20f", result);
Output:
110895.57812500000000000000
However, note that float
only gives six digits of precision. For better precision use double
.
Upvotes: 1