Reputation: 1215
The question is to generate the lexicographically greatest string given some string s. So the aim is to find lexicographically greatest, unique(no repetitions) substring s1 from s. We say that some subsequence s1 is greater than another subsequence s2 if s1 has more characters than s2 or s1 is lexicographically greater than s2 if equal length.
I/O are as follows:
Input is: babab
output is: ba
Second input is: nlhthgrfdnnlprjtecpdrthigjoqdejsfkasoctjijaoebqlrgaiakfsbljmpibkidjsrtkgrdnqsknbarpabgokbsrfhmeklrle
Second output is: tsocrpkijgdqnbafhmle
This is what I wrote for my java code but my code fails on the second test case. Also I'm having a hard time understanding why second output isn't tsrqponmlkjihgfedcba. Can somebody provide suggestions for a fix or even java code?
I think the algorithm has to be more efficient than generating all possible unique strings, sort them and find lexicographically largest one.
To make the question much clearer, if the input is babab, then all the possible unique combinations would be b, a, ba, ab. And the output will be ba because it's the longest and lexicographically greater than ab.
Note: this is not a homework assignment.
import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStreamReader;
public class mostBeautiful {
final static int MAX = 1000000;
static String[] permute;
static void permutation(String prefix, String str, int counter) {
int n = str.length();
//System.out.println("n is: "+ n);
if (n == 0) {
permute[counter] = prefix;
} else {
for (int i = 0; i < n; i++) {
//System.out.println("str is: "+ str);
permutation(prefix + str.charAt(i), str.substring(0, i) + str.substring(i+1, n), counter++);
}
}
}
public static void main(String[] args) throws IOException {
BufferedReader bf = new BufferedReader(new InputStreamReader(System.in));
String s = bf.readLine();
char[] unique = new char[26];
int counter = 0;
String answer = "";
//System.out.println("s is: " + s);
int ascii = 0;
final int asciiAVal = 97;
final int asciiZVal = 122;
for (int i = 0; i < s.length(); i++) {
ascii = (int)s.charAt(i);
if (ascii < asciiAVal || ascii > asciiZVal) {
continue;
}
char ch = s.charAt(i);
unique[ch - 'a'] = ch;
}
String result = "";
for (int j = 25; j >= 0; j--) {
result += unique[j];
}
result = result.trim();
System.out.println(result);
int size = result.length() * (result.length() - 1);
permute = new String[size];
permutation("", result, counter);
for (int i = 1; i < size; i++) {
if (permute[i].compareTo(permute[i - 1]) > 0){
answer = permute[i];
} else {
answer = permute[i - 1];
}
}
System.out.println("answer is: " + answer);
}
}
Upvotes: 1
Views: 11319
Reputation: 1
import java.util.ArrayList;
import java.util.HashMap;
import java.util.Scanner;
class aaa {
public static void main(String args[]) throws Exception {
Scanner scan = new Scanner(System.in);
// int n = scan.nextInt();
String s = scan.next();
HashMap<Character, Node5> map = new HashMap<>();
for (int i = 0; i < s.length(); i++) {
if (!map.containsKey(s.charAt(i))) {
Node5 node = new Node5();
node.nl.add(i);
node.li = i;
map.put(s.charAt(i), node);
} else {
Node5 rn = map.get(s.charAt(i));
rn.nl.add(i);
rn.li = i;
map.put(s.charAt(i), rn);
}
}
String s1 = "";
int index = -1;
for (int i = 25; i >= 0; i--) {
if (map.containsKey((char) (97 + i))) {
if (map.get((char) (97 + i)).li > index) {
for (int j = 0; j < map.get((char) (97 + i)).nl.size(); j++) {
if (map.get((char) (97 + i)).nl.get(j) > index) {
s1 += (char) (97 + i);
index = map.get((char) (97 + i)).nl.get(j);
}
}
}
}
}
System.out.println(s1);
scan.close();
}
}
class Node5 {
int li;
ArrayList<Integer> nl;
public Node5() {
this.nl = new ArrayList<>();
}
}
Upvotes: 0
Reputation: 1651
Lexicographic order is an order in which words are displayed in alphabetical order using the appearance of letters in the word.It is also know as dictionary order or alphabetical order.For ex:-"Africa" is smaller than "Bangladesh" ,"He" is smaller than "he".
public class LexicographicExample {
public static void main(String a[]) {
Scanner sc = new Scanner(System.in);
System.out.println("Enter the String:-");
String str = sc.nextLine();
System.out.println("Enter the length");
int count = sc.nextInt();
List<String> list = new ArrayList<String>();
for (int i = 0; i < str.length(); i = i + 1) {
if (str.length() - i >= count) {
list.add(str.substring(i, count + i));
}
}
Collections.sort(list);
System.out.println("Smallest subString:-" + list.get(0));
System.out.println("Largest subString:-" + list.get(list.size() - 1));
}
}
For reference ,refer this link http://techno-terminal.blogspot.in/2015/09/java-program-to-find-lexicographically.html
Upvotes: 1
Reputation: 3047
After thinking about this problem in many ways, I have determined a divide-and-conquer algorithm that gets the results right:
Assuming some input string, S defined as a concatenation of two substrings A + B, we compute the lexicographically greatest string recursively as:
LexMax(S) = Merge(LexMax(A),LexMax(B))
Where
LexMax(S)
{
if Length(S) = 1
return S
else
{
LMA = LexMax(S[0:Length/2])
LMB = LexMax(S[Length/2:end])
return Merge(LMA,LMB)
}
}
Merge(A,B)
{
Sa = A
Sb = B
for n = 0:Length(A)
{
if Sb contains A[n]
{
if A[n+1:end] contains character > A[n]
Remove A[n] from Sa
else
Remove A[n] from Sb
}
}
return Sa + Sb
}
Coming soon!
Given an input string
cefcfdabbcfed
Divide it into
cefcfda
bbcfed
Assuming the function works we have:
LexMax("cefcfda") = "efcda"
LexMax("bbcfed") = "bcfed"
Merging works as follows:
e: efcda bcfed
In both substrings, greater value found to right of e in left substring, remove from left
f: fcda bcfed
In both substrings, no greater value in left substring, remove from right
c: fcda bced
In both substrings, greater value found to right of c in left substring, remove from left
d: fda bced
In both substrings, no greater value in left substring, remove from right
a: fda bce
Not in both substrings, do nothing
Final result:
LexMax(cefcfdabbcfed) = fdabce
Upvotes: 2
Reputation: 3744
"tsrqponmlkjihgfedcba" is not the answer because it is not a subsequence of the input. The definition of subsequence requires that the characters of the subsequence occur in the original sequence in the same order. For example, "abc" is a subsequence of "apbqcr", while "cba" is not.
As to the solution, I think a simple greedy algorithm would suffice. First, one has to understand that the maximum possible length of the output is the number of unique symbols (say, N) in the input. Since any output shorter than that would not be the greatest one, it has to be exactly N symbols long. The rest of the procedure is simple and at most quadratic in time complexity: one has to go through the input string and at each step pick the lexicographically highest symbol such that the part of the string to the left of it would still contain all the "unused" symbols.
As an example, consider a string "bacb". The first symbol can be 'a' or 'b', since in both cases the remainder contains both of the other letters. 'b' is greater, so we pick it. Now for "acb" we can only pick 'a' and than 'c' according to that condition, so we end up with "bac" for output.
Upvotes: 0
Reputation: 200206
This is not a direct answer, but doesn't this code meet the requirement as you explained it in the discussion above?
final String x = "saontehusanoethusnaoteusnaoetuh";
final SortedSet<Character> chars =
new TreeSet<Character>(Collections.reverseOrder());
for (char c : x.toCharArray()) chars.add(c);
System.out.println(chars);
Upvotes: 1