Reputation: 35
I'm trying to implement a Real-Time Strategy control scheme for the MS Kinect. So far, I've got a cursor, which can be moved by moving your left Hand (or right, dependant on your handedness). I've got an Open-NI-based Kinect controller which sets up a skeleton for player-movements and delivers the wrist-, elbow-, shoulder- and body-center-coordinates to my application. To project these wrist-coordinates to the screen, I've set up a Rectangle, which is situated slightly left/right from the player's center and as long as the wrist moves inside the rectangle, the cursor moves on screen. My problem is, that the XNA-Rectangle has the upper left corner as point of origin, i.e. the X-axis points right, as it "should", but the Y-axis points down, while the Y-axis of the Kinect - coordinate system points up. This results in the cursor moving upwards on screen, when I move my hand down and vice versa. There's no way for me to change anything with the Kinect-coordinate system, so is it possible to 'flip' the 'coordinate system' of the rectangle, so that it's Y-axis points up,too?
Here's the relevant code:
(from Calibrate()-Method:)
List<Vector3> joints = UDPlistener.getInstance().ParseCalibCoordinates(data);
//0 = Right Wrist 1 = Right Elbow 2 = Right Shoulder
//3 = Left Wrist 4 = Left Elbow 5 = Left Shoulder
//6 = Center
height = 762;
width = 1024;
switch (hand)
{
case 0:
cursorSpace = new Rectangle((int)(joints[6].X * 2) - 200, (int)(joints[6].Y * 2) + height, width, height);
break;
case 3:
cursorSpace = new Rectangle((int)(joints[6].X * 2) - 1200, (int)(joints[6].Y * 2) + height, width, height);
break;
}
public Point Cursor(String data)
{
List<Vector3> joints = UDPlistener.getInstance().ParsePlayCoordinates(data);
//0 = Right Wrist 1 = Left Wrist 2 = Center
double mhx = 0; //main hand x-coordinate
double mhy = 0; // main hand y-coordinate
switch (hand)
{
case 0:
mhx = joints[hand].X;
mhy = joints[hand].Y;
break;
case 3:
mhx = joints[hand-2].X;
mhy = joints[hand-2].Y;
break;
}
int x;
int y;
if (Math.Abs(mhx - mhxOld) < 1.0 || Math.Abs(mhy - mhyOld) < 1.0)
//To remove jittering of the cursor
{
x = (int) mhxOld * 2;
y = (int) mhyOld * 2;
}
else
{
x = (int) mhx * 2;
mhxOld = mhx;
y = (int) mhy * 2;
mhyOld = mhy;
}
Point cursor = new Point(0,0);
if (cursorSpace.Contains(x,y))
{
cursor = new Point(x - cursorSpace.X, y - CursorSpace.Y);
lastCursorPos = cursor;
return cursor;
}
Sorry for the wall of text, I hope, I could make myself clear.
Thanks in advance,
KK
Upvotes: 2
Views: 948
Reputation: 4356
I know this isn't XNA, but I wanted to put this out there for those wpf users:) If you are using something like Channel 9's approach, just have a bool to determine if inverted or not. Example:
private void ScalePosition(FrameworkElement element, Joint joint, bool inverted)
{
//convert the value to X/Y
Joint scaledJoint = joint.ScaleTo(967, 611);
//convert & scale (.3 = means 1/3 of joint distance)
//Joint scaledJoint = joint.ScaleTo(1280, 720, 1f, 1f);
if (!inverted)
{
Canvas.SetLeft(element, scaledJoint.Position.X);
Canvas.SetTop(element, scaledJoint.Position.Y);
}
if (inverted)
{
Canvas.SetLeft(element, scaledJoint.Position.X);
Canvas.SetBottom(element, scaledJoint.Position.Y);
}
}
Hope this helps WPF users!
Upvotes: 0
Reputation: 816
I use an extension method for converting OpenNI coordinates. The following example maps the OpenNI coordinates to XNA coordinates in a 640x480 rectangle in the top left corner, represented as a Vector2 object.
public static Vector2 ToXnaCoordinates(this Point3D point)
{
return new Vector2(
point.X + 320,
(point.Y - 240) * -1);
}
The magic that flips the y coordinate is the * -1
part.
If you want to reach a rectangle of different size than 640x480, you need to scale the coordinates accordingly after conversion. Example:
public static Vector2 ToScaledXnaCoordinates(this Point3D point, int rectSizeX, int rectSizeY)
{
return new Vector2(
(point.X + 320) * rectSizeX / 640,
(point.Y - 240) * -rectSizeY / 480);
}
Upvotes: 2