huseyin tugrul buyukisik
huseyin tugrul buyukisik

Reputation: 11926

can you suggest me better solutions for this in C++ inline-assembly?

i am learning assembly and i started experiments on SSE and MMX registers within the Digital-Mars C++ compiler (intel sytanx more easily readable). I have finished a program that takes var_1 as a value and converts it to the var_2 number system(this is in 8 bit for now. will expand it to 32 64 128 later) . Program does this by two ways:

  1. __asm inlining

  2. Usual C++ way of %(modulo) operator.

Question: Can you tell me more efficient way to use xmm0-7 and mm0-7 registers and can you tell me how to exchange exact bytes of them with al,ah... 8 bit registers?

Usual %(modulo) operator in the C++ usual way is very slow in comparison with __asm on my computer(pentium-m centrino 2.0GHz). If you can tell me how to get rid of division instruction in __asmm, it will be even faster.

When i run the program it gives me:

(for the values: var_1=17,var_2=2,all loops are 200M times)

17 is 10001 in number system 2
__asm(clock)...........: 7250    <------too bad. it is 8-bit calc.
C++(clock).............: 12250   <------not very slow(var_2 is a power of 2)


(for the values: var_1=33,var_2=7,all loops are 200M times)
33 is 45 in number system 7
 __asm(clock)..........: 2875   <-------not good. it is 8-bit calc.
 C++(clock)............: 6328   <----------------really slow(var_2 is not a power of 2)

The second C++ code(the one with % operator): /////////////////////////////////////////////////////////

t1=clock();//reference time
for(int i=0;i<200000000;i++)
{
    y=x;
    counter=0;
    while(y>g)
    {   

        var_3[counter]=y%g;
        y/=g;
        counter++;
    }

     var_3[counter]=y%g;
}   
t2=clock();//final time

_asm code:////////////////////////////////////////////////////////////////////////////////////////////////////////////

     __asm  // i love assembly in some parts of C++
        {

        pushf   //here does register backup
        push eax
        push ebx
        push ecx
        push edx
        push edi

            mov eax,0h      //this will be outer loop counter init to zero
            //init of medium-big registers to zero
            movd xmm0,eax    //cannot set to immediate constant: xmm0=outer loop counter 
            shufps xmm0,xmm0,0h //this makes all bits zero
            movd xmm1,eax
            movd xmm2,eax   
            shufps xmm1,xmm1,0h
            shufps xmm2,xmm2,0h
            movd xmm2,eax 
            shufps xmm3,xmm3,0h//could have made pxor xmm3,xmm3(single instruction)
            //init complete(xmm0,xmm1,xmm2,xmm3 are zero)

            movd xmm1,[var_1] //storing variable_1 to register
            movd xmm2,[var_2] //storing var_2 to register    
            lea ebx,var_3     //calculate var_3 address
            movd xmm3,ebx     //storing var_3's address to register
            for_loop:
            mov eax,0h      
            //this line is index-init to zero(digit array index)
            movd edx,xmm2
            mov cl,dl       //this is the var_1 stored in cl
            movd edx,xmm1
            mov al,dl       //this is the var_2 stored in al
            mov edx,0h
            dng:
                mov ah,00h      //preparation for a 8-bit division
                div cl          //divide

                movd ebx,xmm3   //get var_3 address
                add ebx,edx     //i couldnt find a way to multiply with 4
                add ebx,edx     //so i added 4 times ^^
                add ebx,edx     //add   
                add ebx,edx     //last adding
                //below, mov [ebx],ah is the only memory accessing instruction
                mov [ebx],ah    //(8 bit)this line is equivalent to var_3[i]=remainder


                inc edx         //i++;
                cmp al,00h      //is division zero?
            jne dng             //if no, loop again

            //here edi register has the number of digits

            movd eax,xmm0       //get the outer loop counter from medium-big register
            add eax,01h         //j++;
            movd xmm0,eax       //store the new counter to medium-big register
            cmp eax,0BEBC200h           //is j<(200,000,000) ?
            jb for_loop     //if yes, go loop again
            mov [var_3_size],edx //now we have number of digits too!
         //here does registers revert back to old values
        pop edi
        pop edx
        pop ecx
        pop ebx
        pop eax
        popf     

        }

Whole code://///////////////////////////////////////////////////////////////////////////////////////

#include <iostream.h>
#include <cmath>
#include<stdlib.h>
#include<stdio.h>
#include<time.h>
int main()
    {

    srand(time(0));


    clock_t t1=clock();
    clock_t t2=clock();

    int var_1=17;  //number itself
    int var_2=2;   //number system
    int var_3[100];  //digits to be showed(maximum 100 as seen )
    int var_3_size=0;//asm block will decide what will the number of  digits be

    for(int i=0;i<100;i++)
    {
    var_3[i]=0; //here we initialize digits to zeroes
    }


    t1=clock();//reference time to take
     __asm  // i love assembly in some parts of C++
        {

        pushf   //here does register backup
        push eax
        push ebx
        push ecx
        push edx
        push edi

            mov eax,0h      //this will be outer loop counter init to zero
            //init of medium-big registers to zero
            movd xmm0,eax    //cannot set to immediate constant: xmm0=outer loop counter 
            shufps xmm0,xmm0,0h //this makes all bits zero
            movd xmm1,eax
            movd xmm2,eax   
            shufps xmm1,xmm1,0h
            shufps xmm2,xmm2,0h
            movd xmm2,eax 
            shufps xmm3,xmm3,0h
            //init complete(xmm0,xmm1,xmm2,xmm3 are zero)

            movd xmm1,[var_1] //storing variable_1 to register
            movd xmm2,[var_2] //storing var_2 to register    
            lea ebx,var_3     //calculate var_3 address
            movd xmm3,ebx     //storing var_3's address to register
            for_loop:
            mov eax,0h      
            //this line is index-init to zero(digit array index)
            movd edx,xmm2
            mov cl,dl       //this is the var_1 stored in cl
            movd edx,xmm1
            mov al,dl       //this is the var_2 stored in al
            mov edx,0h
            dng:
                mov ah,00h      //preparation for a 8-bit division
                div cl          //divide

                movd ebx,xmm3   //get var_3 address
                add ebx,edx     //i couldnt find a way to multiply with 4
                add ebx,edx     //so i added 4 times ^^
                add ebx,edx     //add   
                add ebx,edx     //last adding
                //below, mov [ebx],ah is the only memory accessing instruction
                mov [ebx],ah    //(8 bit)this line is equivalent to var_3[i]=remainder


                inc edx         //i++;
                cmp al,00h      //is division zero?
            jne dng             //if no, loop again

            //here edi register has the number of digits

            movd eax,xmm0       //get the outer loop counter from medium-big register
            add eax,01h         //j++;
            movd xmm0,eax       //store the new counter to medium-big register
            cmp eax,0BEBC200h           //is j<(200,000,000) ?
            jb for_loop     //if yes, go loop again
            mov [var_3_size],edx //now we have number of digits too!
         //here does registers revert back to old values
        pop edi
        pop edx
        pop ecx
        pop ebx
        pop eax
        popf     

        }
    t2=clock(); //finish time
    printf("\n assembly_inline(clocks): %i  for the 200 million calculations",(t2-t1)); 

        printf("\n value %i(in decimal) is: ",var_1);
for(int i=var_3_size-1;i>=0;i--)
{
    printf("%i",var_3[i]);
}
printf(" in the number system: %i \n",var_2);




//and: more readable form(end easier)
    int counter=var_3_size;
    int x=var_1;
    int g=var_2;
    int y=x;// backup
t1=clock();//reference time

for(int i=0;i<200000000;i++)
{
    y=x;
    counter=0;
    while(y>g)
    {   

        var_3[counter]=y%g;
        y/=g;
        counter++;
    }

     var_3[counter]=y%g;
}

t2=clock();//final time
printf("\n C++(clocks): %i  for the 200 million calculations",(t2-t1)); 

printf("\n value %i(in decimal) is: ",x);
for(int i=var_3_size-1;i>=0;i--)
{
    printf("%i",var_3[i]);
}
printf(" in the number system: %i \n",g);
return 0;

}

edit: this is 32-bit version

    void get_digits_asm()
{
    __asm
    {

        pushf       //couldnt store this in other registers 
        movd xmm0,eax//storing in xmm registers instead of pushing
        movd xmm1,ebx//
        movd xmm2,ecx//
        movd xmm3,edx//
        movd xmm4,edi//end of push backups

        mov eax,[variable_x]
        mov ebx,[number_system]
        mov ecx,0h
        mov edi,0h

        begin_loop:
        mov edx,0h
        div ebx             
        lea edi,digits  
        mov [edi+ecx*4],edx
        add ecx,01h
        cmp eax,ebx
        ja begin_loop

        mov edx,0
        div ebx
        lea edi,digits
        mov [edi+ecx*4],edx
        inc ecx
        mov [digits_total],ecx


        movd edi,xmm4//pop edi
        movd edx,xmm3//pop edx
        movd ecx,xmm2//pop ecx
        movd ebx,xmm1//pop ebx
        movd eax,xmm0//pop eax
        popf            
    }

}

Upvotes: 2

Views: 402

Answers (1)

user555045
user555045

Reputation: 64933

The code can be much simpler of course: (modeled after the C++ version, does not include pushes and pops, and not tested)

  mov esi,200000000
_bigloop:
  mov eax,[y]
  mov ebx,[g]
  lea edi,var_3
  ; eax = y
  ; ebx = g
  ; edi = var_3
  xor ecx,ecx
  ; ecx = counter
_loop:
  xor edx,edx
  div ebx
  mov [edi+ecx*4],edx
  add ecx,1
  test eax,eax
  jnz _loop
  sub esi,1
  jnz _bigloop

But I would be surprised if it was faster than the C++ version, and in fact it'll almost certainly be slower if the base is a power of two - all sane compilers know how to turn a division and/or modulo by a power of two into bitshifts and bitwise ands.


Here's a version that uses ab 8-bit division. Similar caveats apply, but now the division could even overflow (if y / g is more than 255).

  mov esi,200000000
_bigloop:
  mov eax,[y]
  mov ebx,[g]
  lea edi,var_3
  ; eax = y
  ; ebx = g
  ; edi = var_3
  xor ecx,ecx
  ; ecx = counter
_loop:
  div bl
  mov [edi+ecx],ah
  add ecx,1
  and eax,0xFF
  jnz _loop
  sub esi,1
  jnz _bigloop

Upvotes: 1

Related Questions