Reputation: 5194
This question is regarding copying and pointer polymorphism. Consider the code below. We have two classes: Base and Derived, which are just regular objects. Then we've got class Foo, which has a pointer to Base as its only member.
The typical usage of Foo is described in the main
function. The input to Foo::SetMemberX
may or may not be a temporary object.
The problem is that I want Foo::SetMember
to create a proper copy of the passed object, and assign its address as a Base*
to Foo::mMember
.
I've managed to come up with 4 possible solution, none of which seem very elegant to me. The first three are shown in the code below in Foo::SetMember1
, Foo::SetMember2
, and Foo::SetMember3
. The 4th option is to leave the memory allocation to the user (ex. foo.SetMember(new Derived())
), which is not very desirable for obvious memory safety issues. Foo should be responsible for memory management, not the user.
#include <iostream>
template <typename tBase, typename tPointer>
void ClonePointer(tBase*& destination, const tPointer* pointer)
{
destination = static_cast<tBase*>(new tPointer(*pointer));
}
// Base can be a virtual class
class Base
{
public:
virtual void Function()
{
std::cout << "Base::Function()" << std::endl;
}
virtual Base* Clone() const = 0;
};
class Derived : public Base
{
public:
virtual void Function()
{
std::cout << "Derived::Function()" << std::endl;
}
virtual Base* Clone() const
{
return new Derived(*this);
}
};
class Foo
{
public:
Foo() : mMember(NULL) { }
~Foo()
{
if (mMember != NULL)
{
delete mMember;
mMember = NULL;
}
}
template <typename T>
void SetMember1(const T& t)
{
if (mMember != NULL)
{
delete mMember;
mMember = NULL;
}
ClonePointer(mMember, &t);
}
void SetMember2(const Base& b)
{
mMember = b.Clone();
}
template <typename T>
void SetMember3(const T& t)
{
if (mMember != NULL)
{
delete mMember;
mMember = NULL;
}
mMember = new T(t);
}
Base& GetMember()
{
return *mMember;
}
private:
Base* mMember;
};
int main(int argc, char** argv)
{
{
Foo f1;
Foo f2;
Foo f3;
// The input may or may not be a tempoary/RValue reference
f1.SetMember1(Derived());
f2.SetMember2(Derived());
f3.SetMember3(Derived());
f1.GetMember().Function();
f2.GetMember().Function();
f3.GetMember().Function();
}
// Output:
// Derived::Function();
// Derived::Function();
// Derived::Function();
system("pause"); // for quick testing
}
The problem with the first method (Foo::SetMember1
) is that I have a random, free, template function, and a template accessore (see the problem with the third method below).
The problem with the second method (Foo::SetMember2
) is that every derived class must implement its own Clone
function. This is too much boilerplate code for the class user, as there will be a lot of classes deriving from Base. If I could somehow automate this, or create a base Cloneable class (without each Base-derived class having to explicitly calling it) with an implemented template Clone
function, this would be the ideal solution.
The problem with the third method (Foo::SetMember3
) is that I'd need a template accessor for Foo. This may not always be possible, especially because of how virtual template methods are not allowed in non-template classes (Foo cannot be a template itself), which is a functionality that might be required.
My questions are:
Are these the only options I have?
Is there a better, more elegant solution to this problem that I'm missing?
Is there any way to create a base Cloneable class and derive Base from it, and have cloning automagically happen for DerivedType::Clone()
?
Upvotes: 1
Views: 4322
Reputation: 119857
Here's a more or less robust Clonable
class that can be inherited to any depth. It uses CRTP and Alecsandrescu-style interleaving inheritance pattern.
#include <iostream>
// set up a little named template parameters rig
template <class X> struct Parent{};
template <class X> struct Self{};
template<class A, class B> struct ParentChild;
// can use ...< Parent<X>, Self<Y> >...
template<class A, class B> struct ParentChild< Parent<A>, Self<B> >
{
typedef A parent_type;
typedef B child_type;
};
// or ...< Self<Y>, Parent<X> >
template<class A, class B> struct ParentChild< Self<B>, Parent<A> >
{
typedef A parent_type;
typedef B child_type;
};
// nothing, really
struct Nada
{
// except the virtual dtor! Everything clonable will inherit from here.
virtual ~Nada() {}
};
// The Clonable template. Accepts two parameters:
// the child class (as in CRTP), and the parent class (one to inherit from)
// In any order.
template <class A, class B = Parent<Nada> > class Clonable :
public ParentChild<A,B>::parent_type
{
public:
// a nice name to refer to in the child class, instead of Clonable<A,B>
typedef Clonable Parent;
// this is our child class
typedef typename ParentChild<A,B>::child_type child_type;
// This is the clone() function returning the cloned object
// Non-virtual, because the compiler has trouble with covariant return
// type here. We have to implemens something similar, by having non-virtual
// that returns the covariant type calling virtual that returns the
// base type, and some cast.
child_type* clone()
{
return static_cast<child_type*>(private_clone());
}
// forward some constructor, C++11 style
template<typename... Args> Clonable(Args&&... args):
ParentChild<A,B>::parent_type(args...) {}
private:
// this is the main virtual clone function
// allocates the new child_type object and copies itself
// with the copy constructor
virtual Nada* private_clone()
{
// we *know* we're the child_type object
child_type* me = static_cast<child_type*>(this);
return new child_type(*me);
};
};
// Test drive and usage example
class Foo : public Clonable < Self<Foo> >
{
public:
Foo (int) { std::cout << "Foo::Foo(int)\n"; }
Foo (double, char) { std::cout << "Foo::Foo(double, char)\n"; }
Foo (const Foo&) { std::cout << "Foo::Foo(Foo&)\n"; }
};
class Bar : public Clonable < Self<Bar>, Parent<Foo> >
{
public:
// cannot say Bar (int i) : Foo(i), unfortunately, because Foo is not
// our immediate parent
// have to use the Parent alias
Bar (int i) : Parent(i)
{ std::cout << "Bar::Bar(int)\n"; }
Bar (double a, char b) : Parent(a, b)
{ std::cout << "Bar::Bar(double, char)\n"; }
Bar (const Bar& b) : Parent(b)
{ std::cout << "Bar::Bar(Bar&)\n"; }
~Bar() { std::cout << "Bar::~Bar()\n"; }
};
int main ()
{
Foo* foo1 = new Bar (123);
Foo* foo2 = foo1->clone(); // this is really a Bar
delete foo1;
delete foo2;
}
Upvotes: 3
Reputation: 9144
For 2nd method, you can use CRTP and you won't need to write clone method in every derived class:
struct Base {
virtual ~Base() {}
virtual Base *clone() const = 0;
};
template <typename Derived>
struct CloneableBase : public Base {
virtual Base *clone() const {
return new Derived(static_cast<Derived const&>(*this));
}
};
struct Derived: CloneableBase<Derived> {};
Upvotes: 2