Reputation: 635
What is the algorithm that Excel uses to calculate a 2nd-order polynomial regression (curve fitting)? Is there sample code or pseudo-code available?
Upvotes: 4
Views: 22511
Reputation: 635
I found a solution that returns the same formula that Excel gives:
Put together an augmented matrix of values used in a Least-Squares Parabola. See the sum equations in http://www.efunda.com/math/leastsquares/lstsqr2dcurve.cfm
Use Gaussian elimination to solve the matrix. Here is C# code that will do that http://www.codeproject.com/Tips/388179/Linear-Equation-Solver-Gaussian-Elimination-Csharp
After running that, the left-over values in the matrix (M) will equal the coefficients given in Excel.
Maybe I can find the R^2 somehow, but I don't need it for my purposes.
Upvotes: 5
Reputation: 7807
Since this is second order, my recommendation would be just create the damn second order terms and do a linear regression.
Ex. If you are doing z~second_order(x,y), it is equivalent to doing z~first_order(x,y,x^2,y^2, xy).
Upvotes: 0
Reputation: 5567
The polynomial trendlines in charts use least squares based on a QR decomposition method like the LINEST worksheet function ( http://support.microsoft.com/kb/828533 ). A second order or quadratic trend for given (x,y) data could be calculated using =LINEST(y,x^{1,2})
.
You can call worksheet formulas from C# using the Worksheet.Evaluate
method.
Upvotes: 3
Reputation: 308743
It depends, because there are a lot of ways to do such a thing depending on the data you supply and how important it is to have the curve pass through those points.
I'm guessing that you have many more points than you do coefficients in the polynomial (e.g. more than three points for a 2nd order curve).
If that's true, then the best you can do is least square fitting, which calculates the coefficients that minimize the mean square error between all the points and the resulting curve.
Upvotes: 0