Reputation: 1788
I am doing histogram equalization on an image. I first get the RGB image and convert it to YUV. I run the histogram equalization algorithm on Y' of YUV and then convert back to RGB. Is it me, or does the image look weird? I am doing this correctly? this image is pretty bright, other images are a little red.
Here are the before/after images:
The algorithm (the commented values are values that I used previously for conversion. Both yield pretty much the same results) :
public static void createContrast(Bitmap src) {
int width = src.getWidth();
int height = src.getHeight();
Bitmap processedImage = Bitmap.createBitmap(width, height, src.getConfig());
int A = 0,R,G,B;
int pixel;
float[][] Y = new float[width][height];
float[][] U = new float[width][height];
float[][] V = new float [width][height];
int [] histogram = new int[256];
Arrays.fill(histogram, 0);
int [] cdf = new int[256];
Arrays.fill(cdf, 0);
float min = 257;
float max = 0;
for(int x = 0; x < width; ++x) {
for(int y = 0; y < height; ++y) {
pixel = src.getPixel(x, y);
//Log.i("TEST","("+x+","+y+")");
A = Color.alpha(pixel);
R = Color.red(pixel);
G = Color.green(pixel);
B = Color.blue(pixel);
/*Log.i("TESTEST","R: "+R);
Log.i("TESTEST","G: "+G);
Log.i("TESTEST","B: "+B);*/
// convert to YUV
/*Y[x][y] = 0.299f * R + 0.587f * G + 0.114f * B;
U[x][y] = 0.492f * (B-Y[x][y]);
V[x][y] = 0.877f * (R-Y[x][y]);*/
Y[x][y] = 0.299f * R + 0.587f * G + 0.114f * B;
U[x][y] = 0.565f * (B-Y[x][y]);
V[x][y] = 0.713f * (R-Y[x][y]);
// create a histogram
histogram[(int) Y[x][y]]+=1;
// get min and max values
if (Y[x][y] < min){
min = Y[x][y];
}
if (Y[x][y] > max){
max = Y[x][y];
}
}
}
cdf[0] = histogram[0];
for (int i=1;i<=255;i++){
cdf[i] = cdf[i-1] + histogram[i];
//Log.i("TESTEST","cdf of: "+i+" = "+cdf[i]);
}
float minCDF = cdf[(int)min];
float denominator = width*height - minCDF;
//Log.i("TEST","Histeq Histeq Histeq Histeq Histeq Histeq");
for(int x = 0; x < width; ++x) {
for(int y = 0; y < height; ++y) {
//Log.i("TEST","("+x+","+y+")");
pixel = src.getPixel(x, y);
A = Color.alpha(pixel);
Y[x][y] = ((cdf[ (int) Y[x][y]] - minCDF)/(denominator)) * 255;
/*R = minMaxCalc(Y[x][y] + 1.140f * V[x][y]);
G = minMaxCalc (Y[x][y] - 0.395f * U[x][y] - 0.581f * V[x][y]);
B = minMaxCalc (Y[x][y] + 2.032f * U[x][y]);*/
R = minMaxCalc(Y[x][y] + 1.140f * V[x][y]);
G = minMaxCalc (Y[x][y] - 0.344f * U[x][y] - 0.714f * V[x][y]);
B = minMaxCalc (Y[x][y] + 1.77f * U[x][y]);
//Log.i("TESTEST","A: "+A);
/*Log.i("TESTEST","R: "+R);
Log.i("TESTEST","G: "+G);
Log.i("TESTEST","B: "+B);*/
processedImage.setPixel(x, y, Color.argb(A, R, G, B));
}
}
}
My next step is to graph the histograms before and after. I just want to get an opinion here.
Upvotes: 3
Views: 2792
Reputation: 553
The question is a little bit old, but let me answer.
The reason is the way histogram equalization works. The algorithm tries to use all of the 0-255 range instead of given image's range.
So if you give it a dark image, it will change relatively brighter pixels to white colors. And relatively darker colors to black colors.
If you give it a bright image, for the same reason it will get darkened.
Upvotes: 0