Reputation: 5789
I need to find the k
largest element in two sorted arrays, but with a twist.
This algorithm assumes k<=max(m,n)
and indexes go awry when k>max(m,n)
. In my problem
i know that will always be k>(m+n)/2
and hence k>min(m,n)
so i need to change Jules Olléon's answer a little bit...i just don't see which bit :~
I've found this link page 3, but there is bug there (when implemented, it doesn't return the right answer)
I know a quick fix would be to multiply both arrays by -1 and take the k smallest of that union and multiply back the answer by -1 but that'll make the code unreadable.
This is not a homework.
Ok, i think i'm missunderstanding Neil's answer or something else because this is what i give 'him'
#include <algorithm>
#include <fstream>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <vector>
#include <Eigen/Dense>
using namespace Eigen;
using Eigen::VectorXf;
using Eigen::VectorXi;
float getNth(VectorXf& v1,VectorXf& v2,int& n){
int step=(n/4),i1=(n/2),i2=(n-i1);
while(!(v2(i2)>=v1(i1-1) && v1(i1)>v2(i2-1))){
if(v1(i1-1)>=v2(i2-1)){
i1-=step;
i2+=step;
} else {
i1+=step;
i2-=step;
}
step/=2;
if(!step) step=1;
}
if(v1(i1-1)>=v2(i2-1))
return v1(i1-1);
else
return v2(i2-1);
}
int main(){
int p,q,n,k,l;
float sol;
std:: cout << "enter p " << std::endl;
std::cin >> p;
std:: cout << "enter q " << std::endl;
std::cin >> q;
n=p+q;
std:: cout << " enter k larger than " << std::min(p,q) << " and smaller than " << n-1 << std::endl;
std::cin >> k;
k=n-k-1;
srand(time(NULL));
VectorXf v1=VectorXf::Random(p);
srand(time(NULL));
VectorXf v2=VectorXf::Random(q);
VectorXf v3(n);
v3 << v1, v2;
std::sort(v3.data(),v3.data()+v3.size(),std::greater<float>()); //std::greater<float>()
std::sort(v1.data(),v1.data()+v1.size(),std::greater<float>());
std::sort(v2.data(),v2.data()+v2.size(),std::greater<float>());
sol=getNth(v1,v2,k);
std::cout << sol << std::endl;
std::cout << v3(k) << std::endl;
return 0;
}
and this is what i get:
enter p
12
enter q
32
enter k larger than 12 and smaller than 43
13
nthoftwo: /Desktop/work/p1/geqw4/vi3/out/sp/ccode/eigen/Eigen/src/Core/DenseCoeffsBase.h:409: Eigen::DenseCoeffsBase<Derived, 1>::Scalar& Eigen::DenseCoeffsBase<Derived, 1>::operator()(Eigen::DenseCoeffsBase<Derived, 1>::Index) [with Derived = Eigen::Matrix<float, -0x00000000000000001, 1>, Eigen::DenseCoeffsBase<Derived, 1>::Scalar = float, Eigen::DenseCoeffsBase<Derived, 1>::Index = long int]: Assertion `index >= 0 && index < size()' failed.
Aborted (core dumped)
if you are unfamiliar with eigen: the error is an index out of bound error caused by getNth(v1,v2,k)
this is a very minor modification on J.F. Sebastian' simple and elegant solution below --all mistakes are mine, but it seems to work. The aim was to work with the original indexes (i.e. i'm not sure Neil's idea is indispensable).
#include <algorithm>
#include <fstream>
#include <iostream>
#include <stdio.h>
#include <stdlib.h>
#include <time.h>
#include <vector>
#include <cassert>
#include <iterator>
#include <Eigen/Dense>
using namespace Eigen;
using Eigen::VectorXf;
using Eigen::VectorXi;
template<class RandomIterator,class Compare>
typename std::iterator_traits<RandomIterator>::value_type
nsmallest(RandomIterator firsta,RandomIterator lasta,RandomIterator firstb,RandomIterator lastb,size_t n,Compare less) {
assert(n<static_cast<size_t>((lasta-firsta)+(lastb-firstb)));
if (firsta==lasta) return *(firstb+n);
if (firstb==lastb) return *(firsta+n);
size_t mida=(lasta-firsta)/2;
size_t midb=(lastb-firstb)/2;
if ((mida+midb)<n)
return less(*(firstb+midb),*(firsta+mida))?
nsmallest(firsta,lasta,firstb+midb+1,lastb,n-(midb+1),less):
nsmallest(firsta+mida+1,lasta,firstb,lastb,n-(mida+1),less);
else
return less(*(firstb+midb),*(firsta+mida))?
nsmallest(firsta,firsta+mida,firstb,lastb,n,less):
nsmallest(firsta,lasta,firstb,firstb+midb,n,less);
}
int main(){
int p,q,n,k,l;
float sol;
std:: cout << "enter p " << std::endl;
std::cin >> p;
std:: cout << "enter q " << std::endl;
std::cin >> q;
n=p+q;
std:: cout << " enter k larger than " << std::min(p,q) << " and smaller than " << n-1 << std::endl;
std::cin >> k;
srand(time(NULL));
VectorXf v1=VectorXf::Random(p);
srand(time(NULL));
VectorXf v2=VectorXf::Random(q);
VectorXf v3(n);
v3 << v1, v2;
std::sort(v3.data(),v3.data()+v3.size());
std::sort(v1.data(),v1.data()+v1.size());
std::sort(v2.data(),v2.data()+v2.size());
sol=nsmallest(v1.data(),v1.data()+v1.size(),v2.data(),v2.data()+v2.size(),k,std::less<float>());
//if it works, these two should return the same.
std::cout << sol << std::endl;
std::cout << v3(k) << std::endl;
return 0;
}
Upvotes: 2
Views: 4440
Reputation: 414235
From your comments I understand that you want to find k-th smallest value given 2 inversely sorted array e.g., for a={5,4,3}, b={2,1,0};
and k=1
the expected result is 0
i.e., the minimum value -- the first smallest value (it means that k
is counted from 1
).
Given nsmallest()
function that works on sorted arrays and accepts a custom comparator you could:
#include <functional> // greater<>
#include <iostream>
#define SIZE(a) (sizeof(a) / sizeof(*a))
int main() {
int a[] = {5,4,3};
int b[] = {2,1,0};
int k = 1; // find minimum value, the 1st smallest value in a,b
int i = k - 1; // convert to zero-based indexing
int v = nsmallest(a, a + SIZE(a), b, b + SIZE(b),
SIZE(a)+SIZE(b)-1-i, std::greater<int>());
std::cout << v << std::endl; // -> 0
return v;
}
I've used @Neil's suggestion to fix the index and @lambdapilgrim's answer for the algorithm:
#include <cassert>
#include <iterator>
template<class RandomIterator, class Compare>
typename std::iterator_traits<RandomIterator>::value_type
nsmallest(RandomIterator firsta, RandomIterator lasta,
RandomIterator firstb, RandomIterator lastb,
size_t n,
Compare less) {
assert(n < static_cast<size_t>((lasta - firsta) + (lastb - firstb)));
if (firsta == lasta) return *(firstb + n);
if (firstb == lastb) return *(firsta + n);
size_t mida = (lasta - firsta) / 2;
size_t midb = (lastb - firstb) / 2;
if ((mida + midb) < n)
return less(*(firstb + midb), *(firsta + mida)) ?
nsmallest(firsta, lasta, firstb + midb + 1, lastb, n - (midb + 1), less) :
nsmallest(firsta + mida + 1, lasta, firstb, lastb, n - (mida + 1), less);
else
return less(*(firstb + midb), *(firsta + mida)) ?
nsmallest(firsta, firsta + mida, firstb, lastb, n, less) :
nsmallest(firsta, lasta, firstb, firstb + midb, n, less);
}
Upvotes: 6
Reputation: 7807
I am not sure what the deal is about k>max(m,n)!
A simple solution:
def find(v1, start1, end1, v2, start2, end2, k):
i = (start1+end1)/2
j = binsearchrank(v2, start2, end2, v1[i])
ranki = (i-start1+1) + (j-start2)
if ranki > k:
return find(v2, start2, j, v1, start1, i, k)
elif ranki < k:
return find(v2, j, end2, v1, i+1, end1, k-ranki)
else:
return v1[i]
Complexity is O(log^2n)
Upvotes: 0
Reputation: 55392
The k
th largest element is also the m + n + 1 - k
th* smallest element so you could try solving the problem that way.
*Counting from 1. If k
is counting from 0, use m + n - 1 - k
instead.
Upvotes: 4
Reputation: 2909
I believe you want something analogous to the merge step of mergesort, where you incrementally compare the ith element of m against the jth element of n - but instead of stashing the values in an array, you're just looking for the kth smallest - so when you find it, return that value (and/or its index) and exit the function.
Upvotes: 0