user1496761
user1496761

Reputation: 31

AHCI Driver for own OS

I have been programming a little AHCI driver for two weeks. I have read this article and Intel's Serial ATA Advanced Host Controller Interface (AHCI) 1.3. There is an example, which shows how to read sectors via DMA mode (osdev.org). I have done this operation (ATA_CMD_READ_DMA 0xC8) successfully, but when i tried to write sectors (ATA_CMD_WRITE_DMA 0xCA) to the device, the HBA set the error

Offset 30h: PxSERR – Port x Serial ATA Error - Handshake Error

(this is decoding from Intel AHCI specification). I don't understand why it happened. Please, help me.

In addition, I have tried to issue the command IDENTIFY 0xEC, but not successfully...

Upvotes: 3

Views: 3105

Answers (1)

Andrew Falanga
Andrew Falanga

Reputation: 2484

You asked this question nearly two months ago so I'm not sure if you've already figured this out. Please note that I'm writing from memory in terms of what must be done first, etc. I may not have remembered all, or accurately, what must be done. You should reference the AHCI spec for everything. The methods for doing this are as varied as there are programmers that have done this. For this reason, I'm not including code examples.

For starters, ensure that you've set the HBA state machine accordingly. You'll be able to find references for the state machines supported by the HBA in that same SATA spec 1.3. In lieu of this, you should check a few registers.

Please note that all page numbers are given with respect to viewing in Adobe Acrobat and are 8 pages more than numbered in the actual document

From page 24 and 25 of the spec., check GHC.IE and GHC.AE. These two will turn on interrupts and ensure that the HBA is working in AHCI mode. Another, very important register to check, is CAP.SSS (Page 23). If this bit is high, then the HBA Supports Staggered Spin-up. This means that the HBA will not perform any protocol negotiation for any port. Before you do the following, store the value of PxSIG (Page 35 and 36).

To actually spin up the port, you'll need to visit pages 33, 34 and 35 of the spec. These pages cover the PxCMD register. For each port supported by the HBA (check CAP.NP to know how many are there), you'll have to switch high bit PxCMD.SUD. After switching that bit high, you'll want to poll on PxSSTS (Page 36) to check the state of the PHY. You can check CAP.ISS in order to know what speed you can expect to see "come alive" on PxSSTS.

After spinning up the port, check PxSIG (Page 35 & 36). The value should be different than when you started. I don't recall now what you can expect them to become, but they will be different. When communication is actually established, the device sends to the host an initial FIS. Without this first FIS, the HBA will be unable to communicate with the device. (It's with this first FIS that the HBA sets the correct bits in PxSIG.)

Finally, after all of this, you'll need to set PxCMD.FRE (page 34). This bit in the port command register enables FIS delivery to the device. If this bit is low, the HBA will ignore anything you send to it.

As I said in the beginning, I'm not sure if this will answer all of your question but I hope that it does get you on the right track. I'm going from memory on the events that must be done in order to effectively communicate to a SATA device. I may not have remembered in full detail.

I hope this helps you.

Upvotes: 8

Related Questions