Reputation: 45252
I have a WPF BitmapImage which I loaded from a .JPG file, as follows:
this.m_image1.Source = new BitmapImage(new Uri(path));
I want to query as to what the colour is at specific points. For example, what is the RGB value at pixel (65,32)?
How do I go about this? I was taking this approach:
ImageSource ims = m_image1.Source;
BitmapImage bitmapImage = (BitmapImage)ims;
int height = bitmapImage.PixelHeight;
int width = bitmapImage.PixelWidth;
int nStride = (bitmapImage.PixelWidth * bitmapImage.Format.BitsPerPixel + 7) / 8;
byte[] pixelByteArray = new byte[bitmapImage.PixelHeight * nStride];
bitmapImage.CopyPixels(pixelByteArray, nStride, 0);
Though I will confess there's a bit of monkey-see, monkey do going on with this code. Anyway, is there a straightforward way to process this array of bytes to convert to RGB values?
Upvotes: 45
Views: 58986
Reputation: 62919
Here is how I would manipulate pixels in C# using multidimensional arrays:
[StructLayout(LayoutKind.Sequential)]
public struct PixelColor
{
public byte Blue;
public byte Green;
public byte Red;
public byte Alpha;
}
public PixelColor[,] GetPixels(BitmapSource source)
{
if(source.Format!=PixelFormats.Bgra32)
source = new FormatConvertedBitmap(source, PixelFormats.Bgra32, null, 0);
int width = source.PixelWidth;
int height = source.PixelHeight;
PixelColor[,] result = new PixelColor[width, height];
source.CopyPixels(result, width * 4, 0);
return result;
}
usage:
var pixels = GetPixels(image);
if(pixels[7, 3].Red > 4)
{
...
}
If you want to update pixels, very similar code works except you will create a WriteableBitmap
, and use this:
public void PutPixels(WriteableBitmap bitmap, PixelColor[,] pixels, int x, int y)
{
int width = pixels.GetLength(0);
int height = pixels.GetLength(1);
bitmap.WritePixels(new Int32Rect(0, 0, width, height), pixels, width*4, x, y);
}
thusly:
var pixels = new PixelColor[4, 3];
pixels[2,2] = new PixelColor { Red=128, Blue=0, Green=255, Alpha=255 };
PutPixels(bitmap, pixels, 7, 7);
Note that this code converts bitmaps to Bgra32 if they arrive in a different format. This is generally fast, but in some cases may be a performance bottleneck, in which case this technique would be modified to match the underlying input format more closely.
Update
Since BitmapSource.CopyPixels
doesn't accept a two-dimensional array it is necessary to convert the array between one-dimensional and two-dimensional. The following extension method should do the trick:
public static class BitmapSourceHelper
{
#if UNSAFE
public unsafe static void CopyPixels(this BitmapSource source, PixelColor[,] pixels, int stride, int offset)
{
fixed(PixelColor* buffer = &pixels[0, 0])
source.CopyPixels(
new Int32Rect(0, 0, source.PixelWidth, source.PixelHeight),
(IntPtr)(buffer + offset),
pixels.GetLength(0) * pixels.GetLength(1) * sizeof(PixelColor),
stride);
}
#else
public static void CopyPixels(this BitmapSource source, PixelColor[,] pixels, int stride, int offset)
{
var height = source.PixelHeight;
var width = source.PixelWidth;
var pixelBytes = new byte[height * width * 4];
source.CopyPixels(pixelBytes, stride, 0);
int y0 = offset / width;
int x0 = offset - width * y0;
for(int y=0; y<height; y++)
for(int x=0; x<width; x++)
pixels[x+x0, y+y0] = new PixelColor
{
Blue = pixelBytes[(y*width + x) * 4 + 0],
Green = pixelBytes[(y*width + x) * 4 + 1],
Red = pixelBytes[(y*width + x) * 4 + 2],
Alpha = pixelBytes[(y*width + x) * 4 + 3],
};
}
#endif
}
There are two implementations here: The first one is fast but uses unsafe code to get an IntPtr to an array (must compile with /unsafe option). The second one is slower but does not require unsafe code. I use the unsafe version in my code.
WritePixels accepts two-dimensional arrays, so no extension method is required.
Edit: As Jerry pointed out in the comments, because of the memory layout, the two-dimensional array has the vertical coordinate first, in other words it must be dimensioned as Pixels[Height,Width] not Pixels[Width,Height] and addressed as Pixels[y,x].
Upvotes: 61
Reputation: 2411
The interpretation of the resulting byte array is dependent upon the pixel format of the source bitmap, but in the simplest case of a 32 bit, ARGB image, each pixel will be composed of four bytes in the byte array. The first pixel would be interpreted thusly:
alpha = pixelByteArray[0];
red = pixelByteArray[1];
green = pixelByteArray[2];
blue = pixelByteArray[3];
To process each pixel in the image, you would probably want to create nested loops to walk the rows and the columns, incrementing an index variable by the number of bytes in each pixel.
Some bitmap types combine multiple pixels into a single byte. For instance, a monochrome image packs eight pixels into each byte. If you need to deal with images other than 24/32 bit per pixels (the simple ones), then I would suggest finding a good book that covers the underlying binary structure of bitmaps.
Upvotes: 16
Reputation: 10224
Much simpler. There's no need to copy the data around, you can get it directly. But this comes at a price: pointers and unsafe
. In a specific situation, decide whether it's worth the speed and ease for you (but you can simply put the image manipulation into its own separate unsafe class and the rest of the program won't be affected).
var bitmap = new WriteableBitmap(image);
data = (Pixel*)bitmap.BackBuffer;
stride = bitmap.BackBufferStride / 4;
bitmap.Lock();
// getting a pixel value
Pixel pixel = (*(data + y * stride + x));
bitmap.Unlock();
where
[StructLayout(LayoutKind.Explicit)]
protected struct Pixel {
[FieldOffset(0)]
public byte B;
[FieldOffset(1)]
public byte G;
[FieldOffset(2)]
public byte R;
[FieldOffset(3)]
public byte A;
}
The error checking (whether the format is indeed BGRA and handling the case if not) will be left to the reader.
Upvotes: 2
Reputation: 6159
I took all examples and created a slightly better one - tested it too
(the only flaw was that magic 96 as DPI which really bugged me)
I also compared this WPF tactic versus:
To my supprise,
This works x10 faster than GDI, and around x15 times faster then Interop.
So if you're using WPF - much better to work with this to get your pixel color.
public static class GraphicsHelpers
{
public static readonly float DpiX;
public static readonly float DpiY;
static GraphicsHelpers()
{
using (var g = Graphics.FromHwnd(IntPtr.Zero))
{
DpiX = g.DpiX;
DpiY = g.DpiY;
}
}
public static Color WpfGetPixel(double x, double y, FrameworkElement AssociatedObject)
{
var renderTargetBitmap = new RenderTargetBitmap(
(int)AssociatedObject.ActualWidth,
(int)AssociatedObject.ActualHeight,
DpiX, DpiY, PixelFormats.Default);
renderTargetBitmap.Render(AssociatedObject);
if (x <= renderTargetBitmap.PixelWidth && y <= renderTargetBitmap.PixelHeight)
{
var croppedBitmap = new CroppedBitmap(
renderTargetBitmap, new Int32Rect((int)x, (int)y, 1, 1));
var pixels = new byte[4];
croppedBitmap.CopyPixels(pixels, 4, 0);
return Color.FromArgb(pixels[3], pixels[2], pixels[1], pixels[0]);
}
return Colors.Transparent;
}
}
Upvotes: 6
Reputation: 37
You can get color components in a byte array. First copy the pixels in 32 bit to an array and convert that to 8-bit array with 4 times larger size
int[] pixelArray = new int[stride * source.PixelHeight];
source.CopyPixels(pixelArray, stride, 0);
// byte[] colorArray = new byte[pixelArray.Length];
// EDIT:
byte[] colorArray = new byte[pixelArray.Length * 4];
for (int i = 0; i < colorArray.Length; i += 4)
{
int pixel = pixelArray[i / 4];
colorArray[i] = (byte)(pixel >> 24); // alpha
colorArray[i + 1] = (byte)(pixel >> 16); // red
colorArray[i + 2] = (byte)(pixel >> 8); // green
colorArray[i + 3] = (byte)(pixel); // blue
}
// colorArray is an array of length 4 times more than the actual number of pixels
// in the order of [(ALPHA, RED, GREEN, BLUE), (ALPHA, RED...]
Upvotes: 0
Reputation: 830
If you want just one Pixel color:
using System.Windows.Media;
using System.Windows.Media.Imaging;
...
public static Color GetPixelColor(BitmapSource source, int x, int y)
{
Color c = Colors.White;
if (source != null)
{
try
{
CroppedBitmap cb = new CroppedBitmap(source, new Int32Rect(x, y, 1, 1));
var pixels = new byte[4];
cb.CopyPixels(pixels, 4, 0);
c = Color.FromRgb(pixels[2], pixels[1], pixels[0]);
}
catch (Exception) { }
}
return c;
}
Upvotes: 3
Reputation: 233
I'd like to add to Ray´s answer that you can also declare PixelColor struct as a union:
[StructLayout(LayoutKind.Explicit)]
public struct PixelColor
{
// 32 bit BGRA
[FieldOffset(0)] public UInt32 ColorBGRA;
// 8 bit components
[FieldOffset(0)] public byte Blue;
[FieldOffset(1)] public byte Green;
[FieldOffset(2)] public byte Red;
[FieldOffset(3)] public byte Alpha;
}
And that way you'll also have access to the UInit32 BGRA (for fast pixel access or copy), besides the individual byte components.
Upvotes: 17
Reputation: 5929
A little remark:
If you are trying to use this code (Edit: provided by Ray Burns), but get the error about the array's rank, try to edit the extension methods as follows:
public static void CopyPixels(this BitmapSource source, PixelColor[,] pixels, int stride, int offset, bool dummy)
and then call the CopyPixels
method like this:
source.CopyPixels(result, width * 4, 0, false);
The problem is, that when the extension method doesn't differ from the original, the original one is called. I guess this is because PixelColor[,]
matches Array
as well.
I hope this helps you if you got the same problem.
Upvotes: 2
Reputation: 4283
I'd like to improve upon Ray's answer - not enough rep to comment. >:( This version has the best of both safe/managed, and the efficiency of the unsafe version. Also, I've done away with passing in the stride as the .Net documentation for CopyPixels says it's the stride of the bitmap, not of the buffer. It's misleading, and can be computed inside the function anyway. Since the PixelColor array must be the same stride as the bitmap (to be able to do it as a single copy call), it makes sense to just make a new array in the function as well. Easy as pie.
public static PixelColor[,] CopyPixels(this BitmapSource source)
{
if (source.Format != PixelFormats.Bgra32)
source = new FormatConvertedBitmap(source, PixelFormats.Bgra32, null, 0);
PixelColor[,] pixels = new PixelColor[source.PixelWidth, source.PixelHeight];
int stride = source.PixelWidth * ((source.Format.BitsPerPixel + 7) / 8);
GCHandle pinnedPixels = GCHandle.Alloc(pixels, GCHandleType.Pinned);
source.CopyPixels(
new Int32Rect(0, 0, source.PixelWidth, source.PixelHeight),
pinnedPixels.AddrOfPinnedObject(),
pixels.GetLength(0) * pixels.GetLength(1) * 4,
stride);
pinnedPixels.Free();
return pixels;
}
Upvotes: 6