superpanda
superpanda

Reputation: 21

Rigid motion estimation

Now what I have is the 3D point sets as well as the projection parameters of the camera. Given two 2D point sets projected from the 3D point by using the camera and transformed camera(by rotation and translation), there should be an intuitive way to estimate the camera motion...I read some parts of Zisserman's book "Muliple view Geometry in Computer Vision", but I still did not get the solution..

Are there any hints, how can the rigid motion be estimated in this case?

THANKS!!

Upvotes: 0

Views: 861

Answers (2)

edu_
edu_

Reputation: 920

Adding to the previous answer, Eigen has an implementation of Umeyama's method for estimation of the rigid transformation between two sets of 3d points. You can use it to get an initial estimation, and then refine it using an optimization algorithm and considering the projections of the 3d points onto the images too. For example, you could try to minimize the reprojection error between 2d points on the first image and projections of the 3d points after you bring them from the reference frame of one camera to the the reference frame of the other using the previously estimated transformation. You can do this in both ways, using the transformation and its inverse, and try to minimize the bidirectional reprojection error. I'd recommend the paper "Stereo visual odometry for autonomous ground robots", by Andrew Howard, as well as some of its references for a better explanation, especially if you are considering an outlier removal/inlier detection step before the actual motion estimation.

Upvotes: 1

Hammer
Hammer

Reputation: 10329

What you are looking for is a solution to the PnP problem. OpenCV has a function which should work called solvePnP. Just to be clear, for this to work you need point locations in world space, a camera matrix, and the points projections onto the image plane. It will then tell you the rotation and translation of the camera or points depending on how you choose to think of it.

Upvotes: 1

Related Questions