Reputation: 7719
Suppose I have a std::tuple
made up of types like
struct A {
static void tip();
};
struct B {
static void tip();
};
struct Z {
};
std::tuple<const A&,const B&,const Z&> tpl;
Yes, I need separate A
, B
. (The implementation of ::tip()
differs for each type.) What I try to implement is a type-sensitive "visitor" that iterates through the tuple starting from the beginning to the end. Upon visiting a particular element of type T
a function should be called depending on whether T
has the ::tip()
method or not. In the simple example of above only A
and B
have ::tip()
implemented and Z
not. So, the iterator should call twice the function for types with the ::tip()
method and once the other function.
Here is what I came up with:
template< int N , bool end >
struct TupleIter
{
template< typename T , typename... Ts >
typename std::enable_if< std::is_function< typename T::tip >::value , void >::type
static Iter( const T& dummy , const std::tuple<Ts...>& tpl ) {
std::cout << "tip\n";
std::get<N>(tpl); // do the work
TupleIter<N+1,sizeof...(Ts) == N+1>::Iter( std::get<N+1>(tpl) , tpl );
}
template< typename T , typename... Ts >
typename std::enable_if< ! std::is_function< typename T::tip >::value , void >::type
static Iter( const T& dummy , const std::tuple<Ts...>& tpl ) {
std::cout << "no tip\n";
std::get<N>(tpl); // do the work
TupleIter<N+1,sizeof...(Ts) == N+1>::Iter( std::get<N+1>(tpl) , tpl );
}
};
template< int N >
struct TupleIter<N,true>
{
template< typename T , typename... Ts >
static void Iter( const std::tuple<Ts...>& tpl ) {
std::cout << "end\n";
}
};
I use a dummy
instance of the type of the element at the iterator position and decide via enable_if
which function to call. Unfortunately this doesn't work/isn't a nice solution:
const T& dummy
is not a clean solutionI was wondering if enable_if
is the right strategy to do the decision and how can one recursively iterate through the std::tuple
capturing the first type and keeping all the remaining arguments in vital state. Read through How to split a tuple? but it doesn't do any decision.
How can one implement such a thing in a correct and portable way in C++11?
Upvotes: 3
Views: 1448
Reputation: 14317
Here is another take on the question, very similar to mfontanini answer, but showcasing:
boost::fusion::for_each (instead of manually iterate over the tuple).
A variant for implementing has_type using an expression-based SFINAE approach, that I feel a little bit simpler to follow than the usual sizeof trick.
#include <boost/tuple/tuple.hpp>
#include <boost/fusion/include/boost_tuple.hpp>
#include <boost/fusion/algorithm.hpp>
#include <iostream>
struct nat // not a type
{
private:
nat();
nat(const nat&);
nat& operator=(const nat&);
~nat();
};
template <typename T>
struct has_tip
{
static auto has_tip_imp(...) -> nat;
template <typename U>
static auto has_tip_imp(U&&) -> decltype(U::tip());
typedef decltype(has_tip_imp(std::declval<T>())) type;
static const bool value = !std::is_same<type, nat>::value;
};
struct CallTip
{
template<typename T>
typename std::enable_if<has_tip<T>::value>::type
operator()(T& t) const
{
std::cout << "tip\n";
T::tip();
}
template<typename T>
typename std::enable_if<!has_tip<T>::value>::type
operator()(T& t) const
{
std::cout << "no tip\n";
return;
}
};
struct A {
static void tip(){}
};
struct B {
static void tip(){}
};
struct Z {
};
int main()
{
A a;
B b;
Z z;
boost::tuple<const A&,const B&,const Z&> tpl(a, b, z);
boost::fusion::for_each(tpl, CallTip());
}
Note that if your compiler support variadic template you can use std::tuple instead of boost::tuple inside fusion::for_each by including #include<boost/fusion/adapted/std_tuple.hpp>
Edit :
As pointed by Xeo in the comment, it is possible to simplify a lot the expression-SFINAE approach by removing completely the trait has_tip and simply forward to a little call helper.
The final code is really neat and tight !
#include <boost/tuple/tuple.hpp>
#include <boost/fusion/include/boost_tuple.hpp>
#include <boost/fusion/algorithm.hpp>
#include <iostream>
struct CallTip
{
template<typename T>
void operator()(const T& t) const
{
call(t);
}
template<class T>
static auto call(const T&) -> decltype(T::tip())
{
std::cout << "tip\n";
T::tip();
}
static void call(...)
{
std::cout << "no tip\n";
}
};
struct A {
static void tip(){}
};
struct B {
static void tip(){}
};
struct Z {
};
int main()
{
A a;
B b;
Z z;
boost::tuple<const A&,const B&,const Z&> tpl(a, b, z);
boost::fusion::for_each(tpl, CallTip());
}
Upvotes: 2
Reputation: 21910
Well, it was harder than I expected, but this works.
Some things you were doing wrong/that I modified:
std::is_function< typename T::tip >::value
, since T::tip
is not a type. Even if this could be evaluated, what would happen when T::tip
does not exist? Substitution would still fail.std::tuple_element
, which retrieves the i-th type from a tuple.TupleIter
's template parameters to the following, which means:"TupleIter
that processes the index-th type, inside a tuple of size n".
template<size_t index, size_t n>
struct TupleIter;
The whole code is this:
#include <tuple>
#include <iostream>
#include <type_traits>
struct A {
static void tip();
};
struct B {
static void tip();
};
struct Z {
};
// Indicates whether the template parameter contains a static member named tip.
template<class T>
struct has_tip {
template<class U>
static char test(decltype(&U::tip));
template<class U>
static float test(...);
static const bool value = sizeof(test<typename std::decay<T>::type>(0)) == sizeof(char);
};
// Indicates whether the n-th type contains a tip static member
template<size_t n, typename... Ts>
struct nth_type_has_tip {
static const bool value = has_tip<typename std::tuple_element<n, std::tuple<Ts...>>::type>::value;
};
// Generic iteration
template<size_t index, size_t n>
struct TupleIter
{
template< typename... Ts >
typename std::enable_if< nth_type_has_tip<index, Ts...>::value , void >::type
static Iter(const std::tuple<Ts...>& tpl)
{
std::cout << "tip\n";
TupleIter<index + 1, n>::Iter(tpl );
}
template< typename... Ts >
typename std::enable_if< !nth_type_has_tip<index, Ts...>::value , void >::type
static Iter(const std::tuple<Ts...>& tpl) {
std::cout << "no tip\n";
TupleIter<index + 1, n>::Iter(tpl );
}
};
// Base class, we've reached the tuple end
template<size_t n>
struct TupleIter<n, n>
{
template<typename... Ts >
static void Iter( const std::tuple<Ts...>& tpl ) {
std::cout << "end\n";
}
};
// Helper function that forwards the first call to TupleIter<>::Iter
template<typename... Ts>
void iterate(const std::tuple<Ts...> &tup) {
TupleIter<0, sizeof...(Ts)>::Iter(tup);
}
int main() {
A a;
B b;
Z z;
std::tuple<const A&,const B&,const Z&> tup(a,b,z);
iterate(tup);
}
Upvotes: 4