Reputation: 2664
I'm probably going to ask this incorrectly and make myself look very stupid but here goes:
I'm trying to do some audio manipulate and processing on a .wav file. Now, I am able to read all of the data (including the header) but need the data to be in frequency, and, in order to this I need to use an FFT.
I searched the internet high and low and found one, and the example was taken out of the "Numerical Recipes in C" book, however, I amended it to use vectors instead of arrays. Ok so here's the problem:
I have been given (as an example to use) a series of numbers and a sampling rate:
X = {50, 206, -100, -65, -50, -6, 100, -135}
Sampling Rate : 8000 Number of Samples: 8
And should therefore answer this:
0Hz A=0 D=1.57079633
1000Hz A=50 D=1.57079633
2000HZ A=100 D=0
3000HZ A=100 D=0
4000HZ A=0 D=3.14159265
The code that I re-wrote compiles, however, when trying to input these numbers into the equation (function) I get a Segmentation fault.. Is there something wrong with my code, or is the sampling rate too high? (The algorithm doesn't segment when using a much, much smaller sampling rate). Here is the code:
#include <iostream>
#include <math.h>
#include <vector>
using namespace std;
#define SWAP(a,b) tempr=(a);(a)=(b);(b)=tempr;
#define pi 3.14159
void ComplexFFT(vector<float> &realData, vector<float> &actualData, unsigned long sample_num, unsigned int sample_rate, int sign)
{
unsigned long n, mmax, m, j, istep, i;
double wtemp,wr,wpr,wpi,wi,theta,tempr,tempi;
// CHECK TO SEE IF VECTOR IS EMPTY;
actualData.resize(2*sample_rate, 0);
for(n=0; (n < sample_rate); n++)
{
if(n < sample_num)
{
actualData[2*n] = realData[n];
}else{
actualData[2*n] = 0;
actualData[2*n+1] = 0;
}
}
// Binary Inversion
n = sample_rate << 1;
j = 0;
for(i=0; (i< n /2); i+=2)
{
if(j > i)
{
SWAP(actualData[j], actualData[i]);
SWAP(actualData[j+1], actualData[i+1]);
if((j/2)<(n/4))
{
SWAP(actualData[(n-(i+2))], actualData[(n-(j+2))]);
SWAP(actualData[(n-(i+2))+1], actualData[(n-(j+2))+1]);
}
}
m = n >> 1;
while (m >= 2 && j >= m) {
j -= m;
m >>= 1;
}
j += m;
}
mmax=2;
while(n > mmax) {
istep = mmax << 1;
theta = sign * (2*pi/mmax);
wtemp = sin(0.5*theta);
wpr = -2.0*wtemp*wtemp;
wpi = sin(theta);
wr = 1.0;
wi = 0.0;
for(m=1; (m < mmax); m+=2) {
for(i=m; (i <= n); i += istep)
{
j = i*mmax;
tempr = wr*actualData[j-1]-wi*actualData[j];
tempi = wr*actualData[j]+wi*actualData[j-1];
actualData[j-1] = actualData[i-1] - tempr;
actualData[j] = actualData[i]-tempi;
actualData[i-1] += tempr;
actualData[i] += tempi;
}
wr = (wtemp=wr)*wpr-wi*wpi+wr;
wi = wi*wpr+wtemp*wpi+wi;
}
mmax = istep;
}
// determine if the fundamental frequency
int fundemental_frequency = 0;
for(i=2; (i <= sample_rate); i+=2)
{
if((pow(actualData[i], 2)+pow(actualData[i+1], 2)) > pow(actualData[fundemental_frequency], 2)+pow(actualData[fundemental_frequency+1], 2)) {
fundemental_frequency = i;
}
}
}
int main(int argc, char *argv[]) {
vector<float> numbers;
vector<float> realNumbers;
numbers.push_back(50);
numbers.push_back(206);
numbers.push_back(-100);
numbers.push_back(-65);
numbers.push_back(-50);
numbers.push_back(-6);
numbers.push_back(100);
numbers.push_back(-135);
ComplexFFT(numbers, realNumbers, 8, 8000, 0);
for(int i=0; (i < realNumbers.size()); i++)
{
cout << realNumbers[i] << "\n";
}
}
The other thing, (I know this sounds stupid) but I don't really know what is expected of the "int sign" That is being passed through the ComplexFFT function, this is where I could be going wrong.
Does anyone have any suggestions or solutions to this problem?
Thank you :)
Upvotes: 6
Views: 3123
Reputation: 29636
I think the problem lies in errors in how you translated the algorithm.
Did you mean to initialize j
to 1
rather than 0
?
for(i = 0; (i < n/2); i += 2)
should probably be for (i = 1; i < n; i += 2)
.
Your SWAP
s should probably be
SWAP(actualData[j - 1], actualData[i - 1]);
SWAP(actualData[j], actualData[i]);
What are the following SWAP
s for? I don't think they're needed.
if((j/2)<(n/4))
{
SWAP(actualData[(n-(i+2))], actualData[(n-(j+2))]);
SWAP(actualData[(n-(i+2))+1], actualData[(n-(j+2))+1]);
}
The j >= m
in while (m >= 2 && j >= m)
should probably be j > m
if you intended to do bit reversal.
In the code implementing the Danielson-Lanczos section, are you sure j = i*mmax;
was not supposed to be an addition, i.e. j = i + mmax;
?
Apart from that, there are a lot of things you can do to simplify your code.
Using your SWAP
macro should be discouraged when you can just use std::swap
... I was going to suggest std::swap_ranges
, but then I realized you only need to swap the real parts, since your data is all reals (your time-series imaginary parts are all 0
):
std::swap(actualData[j - 1], actualData[i - 1]);
You can simplify the entire thing using std::complex
, too.
Upvotes: 4
Reputation: 17487
The FFT in Numerical Recipes in C uses the Cooley-Tukey Algorithm, so in answer to your question at the end, the int sign
being passed allows the same routine to be used to compute both the forward (sign=-1
) and inverse (sign=1
) FFT. This seems to be consistent with the way you are using sign
when you define theta = sign * (2*pi/mmax)
.
Upvotes: 2
Reputation: 3433
I reckon its down to the re-sizing of your vector.
One possibility: Maybe re-sizing will create temp objects on the stack before moving them back to heap i think.
Upvotes: 2