Reputation: 243
I ran across this problem here on stackoverflow:
"I'm having some trouble with this problem in Project Euler. Here's what the question asks: Each new term in the Fibonacci sequence is generated by adding the previous two terms. By starting with 1 and 2, the first 10 terms will be: 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ... Find the sum of all the even-valued terms in the sequence which do not exceed four million."
The top answer was this(which does not compile for me in VS2010...why?):
IEnumerable<int> Fibonacci()
{
int n1 = 0;
int n2 = 1;
yield return 1;
while (true)
{
int n = n1 + n2;
n1 = n2;
n2 = n;
yield return n;
}
}
long result=0;
foreach (int i in Fibonacci().TakeWhile(i => i<4000000).Where(i % 2 == 0))
{
result+=i;
}
Console.WriteLine(result);
I decided to try it for myself before looking for an answer and came up with this(please tell me why or why not this is a good or bad way of solving this problem):
I wrote it in a class because I could add much more to the class in the future than just solving a single Fibonacci problem.
class Fibonacci
{
private int prevNum1 = 1;
private int prevNum2 = 2;
private int sum = 0;
public int GetSum(int min, int max)
{
prevNum1 = min;
prevNum2 = prevNum1 + prevNum1;
if (prevNum1 % 2 == 0)
{
sum += prevNum1;
}
if (prevNum2 % 2 == 0)
{
sum += prevNum2;
}
int fNum = 0;
while (prevNum2 <= max)
{
fNum = prevNum1 + prevNum2;
if (fNum % 2 == 0)
{
//is an even number...add to total
sum += fNum;
}
prevNum1 = prevNum2;
prevNum2 = fNum;
}
return sum;
}
}
Fibonacci Fib = new Fibonacci();
int sum = Fib.GetSum(1, 4000000);
Console.WriteLine("Sum of all even Fibonacci numbers 1-4,000,000 = {0}", sum);
Again, I'm looking for an answer as to why this is a good or bad way to solve this problem. Also why the first solution does not compile. I'm a beginning programmer and trying to learn. Thanks!
Upvotes: 2
Views: 3282
Reputation: 46
The code doesn't compile because of this line:
foreach (int i in Fibonacci().TakeWhile(i => i<4000000).Where(i % 2 == 0))
First of all, .Where() is an extension method (google it) that can be called over a collection (like an IEnumerable of integers in this example). It returns another collection containing any elements that satisfy some condition.
Notice the argument to .Where() is an expression producing a boolean value, true or false..
i % 2 == 0
.Where() does not take a bool as an argument, in this case the appropriate argument is of the type
Func<int,bool>
Which basically means a function that has an int as argument and returns bool. You can define these quite simply
// defines a function taking an int, returning true if that int is even
Func<int,bool> foo = i => i % 2 == 0
So the correct way to use .Where() in this case would be
foreach (int i in Fibonacci().TakeWhile(i => i<4000000).Where(i => i % 2 == 0))
So you can see that .Where() takes the function we supply it and applies it to each number, returning a collection of numbers that are even.
There's some other magic happening with the yield keyword, feel free to google this, but it's more of an advanced topic.
Upvotes: 2
Reputation: 18534
With this it must compile:
foreach (int i in Fibonacci().TakeWhile(i => i < 4000000).Where(i => i % 2 == 0))
{
result += i;
}
The problem why the code didn't compile was bad lambda expression, it was:
.Where(i % 2 == 0)
but must be
.Where(i => i % 2 == 0)
Upvotes: 3