Reputation: 14103
I'm using the neuralnet
package in R, however am having problems saving the plot to disk.
data(iris)
attach(iris)
library(neuralnet)
nn <- neuralnet(as.numeric(Species) ~ Sepal.Length + Sepal.Width + Petal.Length + Petal.Width, data = iris)
png("test.png")
plot(nn)
dev.off()
Have attempted to refere to the manual, in the section plot.nn()
it says:
file a character string naming the plot to write to. If not stated,
the plot will not be saved.
However doing the following yields no valid plot saved:
png("test.png")
plot(nn, file = "test.png")
dev.off()
Platform:
Mac OSX 10.7.3
R version:
platform x86_64-apple-darwin11.3.0
arch x86_64
os darwin11.3.0
system x86_64, darwin11.3.0
status
major 2
minor 15.1
year 2012
month 06
day 22
svn rev 59600
language R
version.string R version 2.15.1 (2012-06-22)
nickname Roasted Marshmallows
Note: R was installed via macports
Upvotes: 7
Views: 4712
Reputation: 41
This worked for me after plotting plot(nn)
:
dev.print(pdf, 'ANN_coefficients_plot.pdf')
Upvotes: 4
Reputation: 14103
After speaking with Frauke Guenther (Maintainer of neuralnet
), she explains the problem lies with neuralnet
's ability to plot more than one neural net at the same time.
The plot(..., file = "")
should have saved the file to disk, however does not seem to function properly, a fix will be patched soon to the package itself, however for the mean time she kindly provided a quick plot.nn()
fix that would allow one to save the plot to disk.
plot.nn <-
function (x, rep = NULL, x.entry = NULL, x.out = NULL, radius = 0.15,
arrow.length = 0.2, intercept = TRUE, intercept.factor = 0.4,
information = TRUE, information.pos = 0.1, col.entry.synapse = "black",
col.entry = "black", col.hidden = "black", col.hidden.synapse = "black",
col.out = "black", col.out.synapse = "black", col.intercept = "blue",
fontsize = 12, dimension = 6, show.weights = TRUE, file = NULL,
...)
{
net <- x
if (is.null(net$weights))
stop("weights were not calculated")
if (!is.null(file) && !is.character(file))
stop("'file' must be a string")
if (is.null(rep)) {
for (i in 1:length(net$weights)) {
if (!is.null(file))
file.rep <- paste(file, ".", i, sep = "")
else file.rep <- NULL
#dev.new()
plot.nn(net, rep = i, x.entry, x.out, radius, arrow.length,
intercept, intercept.factor, information, information.pos,
col.entry.synapse, col.entry, col.hidden, col.hidden.synapse,
col.out, col.out.synapse, col.intercept, fontsize,
dimension, show.weights, file.rep, ...)
}
}
else {
if (is.character(file) && file.exists(file))
stop(sprintf("%s already exists", sQuote(file)))
result.matrix <- t(net$result.matrix)
if (rep == "best")
rep <- as.integer(which.min(result.matrix[, "error"]))
if (rep > length(net$weights))
stop("'rep' does not exist")
weights <- net$weights[[rep]]
if (is.null(x.entry))
x.entry <- 0.5 - (arrow.length/2) * length(weights)
if (is.null(x.out))
x.out <- 0.5 + (arrow.length/2) * length(weights)
width <- max(x.out - x.entry + 0.2, 0.8) * 8
radius <- radius/dimension
entry.label <- net$model.list$variables
out.label <- net$model.list$response
neuron.count <- array(0, length(weights) + 1)
neuron.count[1] <- nrow(weights[[1]]) - 1
neuron.count[2] <- ncol(weights[[1]])
x.position <- array(0, length(weights) + 1)
x.position[1] <- x.entry
x.position[length(weights) + 1] <- x.out
if (length(weights) > 1)
for (i in 2:length(weights)) {
neuron.count[i + 1] <- ncol(weights[[i]])
x.position[i] <- x.entry + (i - 1) * (x.out -
x.entry)/length(weights)
}
y.step <- 1/(neuron.count + 1)
y.position <- array(0, length(weights) + 1)
y.intercept <- 1 - 2 * radius
information.pos <- min(min(y.step) - 0.1, 0.2)
if (length(entry.label) != neuron.count[1]) {
if (length(entry.label) < neuron.count[1]) {
tmp <- NULL
for (i in 1:(neuron.count[1] - length(entry.label))) {
tmp <- c(tmp, "no name")
}
entry.label <- c(entry.label, tmp)
}
}
if (length(out.label) != neuron.count[length(neuron.count)]) {
if (length(out.label) < neuron.count[length(neuron.count)]) {
tmp <- NULL
for (i in 1:(neuron.count[length(neuron.count)] -
length(out.label))) {
tmp <- c(tmp, "no name")
}
out.label <- c(out.label, tmp)
}
}
grid.newpage()
pushViewport(viewport(name = "plot.area", width = unit(dimension,
"inches"), height = unit(dimension, "inches")))
for (k in 1:length(weights)) {
for (i in 1:neuron.count[k]) {
y.position[k] <- y.position[k] + y.step[k]
y.tmp <- 0
for (j in 1:neuron.count[k + 1]) {
y.tmp <- y.tmp + y.step[k + 1]
result <- calculate.delta(c(x.position[k],
x.position[k + 1]), c(y.position[k], y.tmp),
radius)
x <- c(x.position[k], x.position[k + 1] - result[1])
y <- c(y.position[k], y.tmp + result[2])
grid.lines(x = x, y = y, arrow = arrow(length = unit(0.15,
"cm"), type = "closed"), gp = gpar(fill = col.hidden.synapse,
col = col.hidden.synapse, ...))
if (show.weights)
draw.text(label = weights[[k]][neuron.count[k] -
i + 2, neuron.count[k + 1] - j + 1], x = c(x.position[k],
x.position[k + 1]), y = c(y.position[k],
y.tmp), xy.null = 1.25 * result, color = col.hidden.synapse,
fontsize = fontsize - 2, ...)
}
if (k == 1) {
grid.lines(x = c((x.position[1] - arrow.length),
x.position[1] - radius), y = y.position[k],
arrow = arrow(length = unit(0.15, "cm"),
type = "closed"), gp = gpar(fill = col.entry.synapse,
col = col.entry.synapse, ...))
draw.text(label = entry.label[(neuron.count[1] +
1) - i], x = c((x.position - arrow.length),
x.position[1] - radius), y = c(y.position[k],
y.position[k]), xy.null = c(0, 0), color = col.entry.synapse,
fontsize = fontsize, ...)
grid.circle(x = x.position[k], y = y.position[k],
r = radius, gp = gpar(fill = "white", col = col.entry,
...))
}
else {
grid.circle(x = x.position[k], y = y.position[k],
r = radius, gp = gpar(fill = "white", col = col.hidden,
...))
}
}
}
out <- length(neuron.count)
for (i in 1:neuron.count[out]) {
y.position[out] <- y.position[out] + y.step[out]
grid.lines(x = c(x.position[out] + radius, x.position[out] +
arrow.length), y = y.position[out], arrow = arrow(length = unit(0.15,
"cm"), type = "closed"), gp = gpar(fill = col.out.synapse,
col = col.out.synapse, ...))
draw.text(label = out.label[(neuron.count[out] +
1) - i], x = c((x.position[out] + radius), x.position[out] +
arrow.length), y = c(y.position[out], y.position[out]),
xy.null = c(0, 0), color = col.out.synapse, fontsize = fontsize,
...)
grid.circle(x = x.position[out], y = y.position[out],
r = radius, gp = gpar(fill = "white", col = col.out,
...))
}
if (intercept) {
for (k in 1:length(weights)) {
y.tmp <- 0
x.intercept <- (x.position[k + 1] - x.position[k]) *
intercept.factor + x.position[k]
for (i in 1:neuron.count[k + 1]) {
y.tmp <- y.tmp + y.step[k + 1]
result <- calculate.delta(c(x.intercept, x.position[k +
1]), c(y.intercept, y.tmp), radius)
x <- c(x.intercept, x.position[k + 1] - result[1])
y <- c(y.intercept, y.tmp + result[2])
grid.lines(x = x, y = y, arrow = arrow(length = unit(0.15,
"cm"), type = "closed"), gp = gpar(fill = col.intercept,
col = col.intercept, ...))
xy.null <- cbind(x.position[k + 1] - x.intercept -
2 * result[1], -(y.tmp - y.intercept + 2 *
result[2]))
if (show.weights)
draw.text(label = weights[[k]][1, neuron.count[k +
1] - i + 1], x = c(x.intercept, x.position[k +
1]), y = c(y.intercept, y.tmp), xy.null = xy.null,
color = col.intercept, alignment = c("right",
"bottom"), fontsize = fontsize - 2, ...)
}
grid.circle(x = x.intercept, y = y.intercept,
r = radius, gp = gpar(fill = "white", col = col.intercept,
...))
grid.text(1, x = x.intercept, y = y.intercept,
gp = gpar(col = col.intercept, ...))
}
}
if (information)
grid.text(paste("Error: ", round(result.matrix[rep,
"error"], 6), " Steps: ", result.matrix[rep,
"steps"], sep = ""), x = 0.5, y = information.pos,
just = "bottom", gp = gpar(fontsize = fontsize +
2, ...))
popViewport()
if (!is.null(file)) {
weight.plot <- recordPlot()
save(weight.plot, file = file)
}
}
}
calculate.delta <-
function (x, y, r)
{
delta.x <- x[2] - x[1]
delta.y <- y[2] - y[1]
x.null <- r/sqrt(delta.x^2 + delta.y^2) * delta.x
if (y[1] < y[2])
y.null <- -sqrt(r^2 - x.null^2)
else if (y[1] > y[2])
y.null <- sqrt(r^2 - x.null^2)
else y.null <- 0
c(x.null, y.null)
}
draw.text <-
function (label, x, y, xy.null = c(0, 0), color, alignment = c("left",
"bottom"), ...)
{
x.label <- x[1] + xy.null[1]
y.label <- y[1] - xy.null[2]
x.delta <- x[2] - x[1]
y.delta <- y[2] - y[1]
angle = atan(y.delta/x.delta) * (180/pi)
if (angle < 0)
angle <- angle + 0
else if (angle > 0)
angle <- angle - 0
if (is.numeric(label))
label <- round(label, 5)
pushViewport(viewport(x = x.label, y = y.label, width = 0,
height = , angle = angle, name = "vp1", just = alignment))
grid.text(label, x = 0, y = unit(0.75, "mm"), just = alignment,
gp = gpar(col = color, ...))
popViewport()
}
paste the code above into your R interactive prompt, and when you wish to to save your plot do the following:
png("test.png")
plot(nn)
dev.off()
Upvotes: 7
Reputation: 179418
The package neuralnet
uses grid graphics. This means you need to print
your plots in non-interactive mode.
Try this:
png("iris.png")
print(plot(nn))
dev.off()
Upvotes: 1