Reputation: 13
I'm looking for a solution to following task. I take few random pages from random book in English and remove all non letter characters and convert all chars to lower case. As a result I have something like:
wheniwasakidiwantedtobeapilot...
Now what I'm looking for is something that could reverse that process with quite a good accuracy. I need to find words and sentence separators. Any ideas how to approach this problem? Are there existing solutions I can base on without reinventing the wheel?
Upvotes: 1
Views: 268
Reputation: 15422
The tasks you describe are called "words tokenization" and "sentence segmentation". There are a lot of literature about them in NLP. They have very simple straightforward solutions, as well as advanced probabilistic approaches based on language model. Choosing one depends on your exact goal.
Upvotes: 0
Reputation: 52681
This is harder than normal tokenization since the basic tokenization task assumes spaces. Basically all that normal tokenization has to figure out is, for example, whether punctuation should be part of a word (like in "Mr.") or separate (like at the end of a sentence). If this is what you want, you can just download the Stanford CoreNLP package which performs this task very well with a rule-based system.
For your task, you need to figure out where to put in the spaces. This tutorial on Bayesian inference has a chapter on word segmentation in Chinese (Chinese writing doesn't use spaces). The same techniques could be applied to space-free English.
The basic idea is that you have a language model (an N-Gram would be fine) and you want to choose a splitting that maximizes the probability the data according to the language model. So, for example, placing a space between "when" and "iwasakidiwantedtobeapilot" would give you a higher probability according to the language model than placing a split between "whe" and "niwasakidiwantedtobeapilot" because "when" is a better word than "whe". You could do this many times, adding and removing spaces, until you figured out what gave you the most English-looking sentence.
Doing this will give you a long list of tokens. Then when you want to split those tokens into sentences you can actually use the same technique except instead of using a word-based language model to help you add spaces between words, you'll use a sentence-based language model to split that list of tokens into separate sentences. Same idea, just on a different level.
Upvotes: 4