Reputation: 19563
I have a dataset that looks a little like this:
a <- data.frame(x=rep(c(1,2,3,5,7,10,15,20), 5),
y=rnorm(40, sd=2) + rep(c(4,3.5,3,2.5,2,1.5,1,0.5), 5))
ggplot(a, aes(x=x,y=y)) + geom_point() +geom_smooth()
I want the same output as that plot, but instead of smooth curve, I just want to take line segments between the mean/sd values for each set of x values. The graph should look similar to the above graph, but jagged, instead of curved.
I tried this, but it fails, even though the x values aren't unique:
ggplot(a, aes(x=x,y=y)) + geom_point() +stat_smooth(aes(group=x, y=y, x=x))
geom_smooth: Only one unique x value each group.Maybe you want aes(group = 1)?
Upvotes: 8
Views: 18038
Reputation: 701
Using ggplot2 0.9.3.1, the following did the trick for me:
ggplot(a, aes(x=x,y=y)) + geom_point() +
stat_summary(fun.data = 'mean_sdl', mult = 1, geom = 'smooth')
The 'mean_sdl' is an implementation of the Hmisc package's function 'smean.sdl' and the mult-variable gives how many standard deviations (above and below the mean) are displayed.
For detailed info on the original function:
library('Hmisc')
?smean.sdl
Upvotes: 4
Reputation: 5351
You could try writing a summary function as suggested by Hadley Wickham on the website for ggplot2
: http://had.co.nz/ggplot2/stat_summary.html. Applying his suggestion to your code:
p <- qplot(x, y, data=a)
stat_sum_df <- function(fun, geom="crossbar", ...) {
stat_summary(fun.data=fun, colour="blue", geom=geom, width=0.2, ...)
}
p + stat_sum_df("mean_cl_normal", geom = "smooth")
This results in this graphic:
Upvotes: 3
Reputation: 55715
You can use one of the built-in summary functions mean_sdl
. The code is shown below
ggplot(a, aes(x=x,y=y)) +
stat_summary(fun.y = 'mean', colour = 'blue', geom = 'line')
stat_summary(fun.data = 'mean_sdl', geom = 'ribbon', alpha = 0.2)
Upvotes: 4
Reputation: 115435
?stat_summary
is what you should look at.
Here is an example
# functions to calculate the upper and lower CI bounds
uci <- function(y,.alpha){mean(y) + qnorm(abs(.alpha)/2) * sd(y)}
lci <- function(y,.alpha){mean(y) - qnorm(abs(.alpha)/2) * sd(y)}
ggplot(a, aes(x=x,y=y)) + stat_summary(fun.y = mean, geom = 'line', colour = 'blue') +
stat_summary(fun.y = mean, geom = 'ribbon',fun.ymax = uci, fun.ymin = lci, .alpha = 0.05, alpha = 0.5)
Upvotes: 8