Reputation: 1813
Any help on this problem will be greatly appreciated.
So basically I want to run a query to my SQL database and store the returned data as Pandas data structure.
I have attached code for query.
I am reading the documentation on Pandas, but I have problem to identify the return type of my query.
I tried to print the query result, but it doesn't give any useful information.
Thanks!!!!
from sqlalchemy import create_engine
engine2 = create_engine('mysql://THE DATABASE I AM ACCESSING')
connection2 = engine2.connect()
dataid = 1022
resoverall = connection2.execute("
SELECT
sum(BLABLA) AS BLA,
sum(BLABLABLA2) AS BLABLABLA2,
sum(SOME_INT) AS SOME_INT,
sum(SOME_INT2) AS SOME_INT2,
100*sum(SOME_INT2)/sum(SOME_INT) AS ctr,
sum(SOME_INT2)/sum(SOME_INT) AS cpc
FROM daily_report_cooked
WHERE campaign_id = '%s'",
%dataid
)
So I sort of want to understand what's the format/datatype of my variable "resoverall" and how to put it with PANDAS data structure.
Upvotes: 180
Views: 446809
Reputation: 21063
Edit: Mar. 2015
As noted below, pandas now uses SQLAlchemy to both read from (read_sql) and insert into (to_sql) a database. The following should work
import pandas as pd
df = pd.read_sql(sql, cnxn)
Previous answer: Via mikebmassey from a similar question
import pyodbc
import pandas.io.sql as psql
cnxn = pyodbc.connect(connection_info)
cursor = cnxn.cursor()
sql = "SELECT * FROM TABLE"
df = psql.frame_query(sql, cnxn)
cnxn.close()
Upvotes: 176
Reputation: 68176
pandas now has a read_sql
function. You definitely want to use that instead.
I can't help you with SQLAlchemy -- I always use pyodbc, MySQLdb, or psychopg2 as needed. But when doing so, a function as simple as the one below tends to suit my needs:
import decimal
import pyodbc #just corrected a typo here
import numpy as np
import pandas
cnn, cur = myConnectToDBfunction()
cmd = "SELECT * FROM myTable"
cur.execute(cmd)
dataframe = __processCursor(cur, dataframe=True)
def __processCursor(cur, dataframe=False, index=None):
'''
Processes a database cursor with data on it into either
a structured numpy array or a pandas dataframe.
input:
cur - a pyodbc cursor that has just received data
dataframe - bool. if false, a numpy record array is returned
if true, return a pandas dataframe
index - list of column(s) to use as index in a pandas dataframe
'''
datatypes = []
colinfo = cur.description
for col in colinfo:
if col[1] == unicode:
datatypes.append((col[0], 'U%d' % col[3]))
elif col[1] == str:
datatypes.append((col[0], 'S%d' % col[3]))
elif col[1] in [float, decimal.Decimal]:
datatypes.append((col[0], 'f4'))
elif col[1] == datetime.datetime:
datatypes.append((col[0], 'O4'))
elif col[1] == int:
datatypes.append((col[0], 'i4'))
data = []
for row in cur:
data.append(tuple(row))
array = np.array(data, dtype=datatypes)
if dataframe:
output = pandas.DataFrame.from_records(array)
if index is not None:
output = output.set_index(index)
else:
output = array
return output
Upvotes: 23
Reputation: 1894
Here is a simple solution I like:
Put your DB connection info in a YAML file in a secure location (do not version it in the code repo).
---
host: 'hostname'
port: port_number_integer
database: 'databasename'
user: 'username'
password: 'password'
Then load the conf in a dictionary, open the db connection and load the result set of the SQL query in a data frame:
import yaml
import pymysql
import pandas as pd
db_conf_path = '/path/to/db-conf.yaml'
# Load DB conf
with open(db_conf_path) as db_conf_file:
db_conf = yaml.safe_load(db_conf_file)
# Connect to the DB
db_connection = pymysql.connect(**db_conf)
# Load the data into a DF
query = '''
SELECT *
FROM my_table
LIMIT 10
'''
df = pd.read_sql(query, con=db_connection)
Upvotes: 0
Reputation: 37
pandas.io.sql.write_frame is DEPRECATED. https://pandas.pydata.org/pandas-docs/version/0.15.2/generated/pandas.io.sql.write_frame.html
Should change to use pandas.DataFrame.to_sql https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_sql.html
There is another solution. PYODBC to Pandas - DataFrame not working - Shape of passed values is (x,y), indices imply (w,z)
As of Pandas 0.12 (I believe) you can do:
import pandas
import pyodbc
sql = 'select * from table'
cnn = pyodbc.connect(...)
data = pandas.read_sql(sql, cnn)
Prior to 0.12, you could do:
import pandas
from pandas.io.sql import read_frame
import pyodbc
sql = 'select * from table'
cnn = pyodbc.connect(...)
data = read_frame(sql, cnn)
Upvotes: 2
Reputation: 649
# pip install mysql-connector-python
import mysql.connector
import pandas as pd
mydb = mysql.connector.connect(
host = 'host',
user = 'username',
passwd = 'pass',
database = 'db_name'
)
query = 'select * from table_name'
df = pd.read_sql(query, con = mydb)
print(df)
# pip install pymysql
# pip install sqlalchemy
import pandas as pd
import sqlalchemy
engine = sqlalchemy.create_engine('mysql+pymysql://username:password@localhost:3306/db_name')
query = '''
select * from table_name
'''
df = pd.read_sql_query(query, engine)
print(df)
Upvotes: 25
Reputation: 1843
This is a short and crisp answer to your problem:
from __future__ import print_function
import MySQLdb
import numpy as np
import pandas as pd
import xlrd
# Connecting to MySQL Database
connection = MySQLdb.connect(
host="hostname",
port=0000,
user="userID",
passwd="password",
db="table_documents",
charset='utf8'
)
print(connection)
#getting data from database into a dataframe
sql_for_df = 'select * from tabledata'
df_from_database = pd.read_sql(sql_for_df , connection)
Upvotes: 9
Reputation: 8225
If you are using SQLAlchemy's ORM rather than the expression language, you might find yourself wanting to convert an object of type sqlalchemy.orm.query.Query
to a Pandas data frame.
The cleanest approach is to get the generated SQL from the query's statement attribute, and then execute it with pandas's read_sql()
method. E.g., starting with a Query object called query
:
df = pd.read_sql(query.statement, query.session.bind)
Upvotes: 44
Reputation: 1143
Here's the code I use. Hope this helps.
import pandas as pd
from sqlalchemy import create_engine
def getData():
# Parameters
ServerName = "my_server"
Database = "my_db"
UserPwd = "user:pwd"
Driver = "driver=SQL Server Native Client 11.0"
# Create the connection
engine = create_engine('mssql+pyodbc://' + UserPwd + '@' + ServerName + '/' + Database + "?" + Driver)
sql = "select * from mytable"
df = pd.read_sql(sql, engine)
return df
df2 = getData()
print(df2)
Upvotes: 9
Reputation: 896
For those that works with the mysql connector you can use this code as a start. (Thanks to @Daniel Velkov)
Used refs:
import pandas as pd
import mysql.connector
# Setup MySQL connection
db = mysql.connector.connect(
host="<IP>", # your host, usually localhost
user="<USER>", # your username
password="<PASS>", # your password
database="<DATABASE>" # name of the data base
)
# You must create a Cursor object. It will let you execute all the queries you need
cur = db.cursor()
# Use all the SQL you like
cur.execute("SELECT * FROM <TABLE>")
# Put it all to a data frame
sql_data = pd.DataFrame(cur.fetchall())
sql_data.columns = cur.column_names
# Close the session
db.close()
# Show the data
print(sql_data.head())
Upvotes: 20
Reputation: 15567
Simply use pandas
and pyodbc
together. You'll have to modify your connection string (connstr
) according to your database specifications.
import pyodbc
import pandas as pd
# MSSQL Connection String Example
connstr = "Server=myServerAddress;Database=myDB;User Id=myUsername;Password=myPass;"
# Query Database and Create DataFrame Using Results
df = pd.read_sql("select * from myTable", pyodbc.connect(connstr))
I've used pyodbc
with several enterprise databases (e.g. SQL Server, MySQL, MariaDB, IBM).
Upvotes: 4
Reputation: 1547
If the result type is ResultSet, you should convert it to dictionary first. Then the DataFrame columns will be collected automatically.
This works on my case:
df = pd.DataFrame([dict(r) for r in resoverall])
Upvotes: 0
Reputation: 3831
Here is mine. Just in case if you are using "pymysql":
import pymysql
from pandas import DataFrame
host = 'localhost'
port = 3306
user = 'yourUserName'
passwd = 'yourPassword'
db = 'yourDatabase'
cnx = pymysql.connect(host=host, port=port, user=user, passwd=passwd, db=db)
cur = cnx.cursor()
query = """ SELECT * FROM yourTable LIMIT 10"""
cur.execute(query)
field_names = [i[0] for i in cur.description]
get_data = [xx for xx in cur]
cur.close()
cnx.close()
df = DataFrame(get_data)
df.columns = field_names
Upvotes: 2
Reputation: 199
best way I do this
db.execute(query) where db=db_class() #database class
mydata=[x for x in db.fetchall()]
df=pd.DataFrame(data=mydata)
Upvotes: 1
Reputation: 23
Long time from last post but maybe it helps someone...
Shorted way than Paul H:
my_dic = session.query(query.all())
my_df = pandas.DataFrame.from_dict(my_dic)
Upvotes: 1
Reputation: 116
Like Nathan, I often want to dump the results of a sqlalchemy or sqlsoup Query into a Pandas data frame. My own solution for this is:
query = session.query(tbl.Field1, tbl.Field2)
DataFrame(query.all(), columns=[column['name'] for column in query.column_descriptions])
Upvotes: 5
Reputation: 5920
This question is old, but I wanted to add my two-cents. I read the question as " I want to run a query to my [my]SQL database and store the returned data as Pandas data structure [DataFrame]."
From the code it looks like you mean mysql database and assume you mean pandas DataFrame.
import MySQLdb as mdb
import pandas.io.sql as sql
from pandas import *
conn = mdb.connect('<server>','<user>','<pass>','<db>');
df = sql.read_frame('<query>', conn)
For example,
conn = mdb.connect('localhost','myname','mypass','testdb');
df = sql.read_frame('select * from testTable', conn)
This will import all rows of testTable into a DataFrame.
Upvotes: 3
Reputation: 27619
Here's the shortest code that will do the job:
from pandas import DataFrame
df = DataFrame(resoverall.fetchall())
df.columns = resoverall.keys()
You can go fancier and parse the types as in Paul's answer.
Upvotes: 185
Reputation: 69186
resoverall
is a sqlalchemy ResultProxy object. You can read more about it in the sqlalchemy docs, the latter explains basic usage of working with Engines and Connections. Important here is that resoverall
is dict like.
Pandas likes dict like objects to create its data structures, see the online docs
Good luck with sqlalchemy and pandas.
Upvotes: 4